Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(3): e2210300120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36634142

ABSTRACT

Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.


Subject(s)
Agrobacterium , Repressor Proteins , Repressor Proteins/genetics , Repressor Proteins/metabolism , Agrobacterium/genetics , Agrobacterium/metabolism , Plasmids , Crops, Agricultural/genetics , Plant Immunity , Plant Roots/metabolism
2.
New Phytol ; 236(3): 911-928, 2022 11.
Article in English | MEDLINE | ID: mdl-35838067

ABSTRACT

Plants produce specialized metabolites to protect themselves from biotic enemies. Members of the Solanaceae family accumulate phenylpropanoid-polyamine conjugates (PPCs) in response to attackers while also maintaining a chemical barrier of steroidal glycoalkaloids (SGAs). Across the plant kingdom, biosynthesis of such defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors play a central role. By characterizing hairy root mutants obtained through Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (CRISPR-Cas9) genome editing, we show that the tomato clade IIIe bHLH transcription factors, MYC1 and MYC2, redundantly control jasmonate-inducible PPC and SGA production, and are also essential for constitutive SGA biosynthesis. Double myc1 myc2 loss-of-function tomato hairy roots displayed suppressed constitutive expression of SGA biosynthesis genes, and severely reduced levels of the main tomato SGAs α-tomatine and dehydrotomatine. In contrast, basal expression of genes involved in PPC biosynthesis was not affected. CRISPR-Cas9(VQR) genome editing of a specific cis-regulatory element, targeted by MYC1/2, in the promoter of a SGA precursor biosynthesis gene led to decreased constitutive expression of this gene, but did not affect its jasmonate inducibility. Our results demonstrate that clade IIIe bHLH transcriptional regulators have evolved under the control of distinct regulatory cues to specifically steer constitutive and stress-inducible specialized metabolism.


Subject(s)
Solanum lycopersicum , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , CRISPR-Associated Protein 9/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Oxylipins/metabolism , Polyamines/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Sci Adv ; 8(20): eabm2091, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35594358

ABSTRACT

Plants respond to mechanical stimuli to direct their growth and counteract environmental threats. Mechanical stimulation triggers rapid gene expression changes and affects plant appearance (thigmomorphogenesis) and flowering. Previous studies reported the importance of jasmonic acid (JA) in touch signaling. Here, we used reverse genetics to further characterize the molecular mechanisms underlying touch signaling. We show that Piezo mechanosensitive ion channels have no major role in touch-induced gene expression and thigmomorphogenesis. In contrast, the receptor-like kinase Feronia acts as a strong negative regulator of the JA-dependent branch of touch signaling. Last, we show that calmodulin-binding transcriptional activators CAMTA1/2/3 are key regulators of JA-independent touch signaling. CAMTA1/2/3 cooperate to directly bind the promoters and activate gene expression of JA-independent touch marker genes like TCH2 and TCH4. In agreement, camta3 mutants show a near complete loss of thigmomorphogenesis and touch-induced delay of flowering. In conclusion, we have now identified key regulators of two independent touch-signaling pathways.

4.
Front Plant Sci ; 12: 687406, 2021.
Article in English | MEDLINE | ID: mdl-34113373

ABSTRACT

Catharanthus roseus produces a diverse range of specialized metabolites of the monoterpenoid indole alkaloid (MIA) class in a heavily branched pathway. Recent great progress in identification of MIA biosynthesis genes revealed that the different pathway branch genes are expressed in a highly cell type- and organ-specific and stress-dependent manner. This implies a complex control by specific transcription factors (TFs), only partly revealed today. We generated and mined a comprehensive compendium of publicly available C. roseus transcriptome data for MIA pathway branch-specific TFs. Functional analysis was performed through extensive comparative gene expression analysis and profiling of over 40 MIA metabolites in the C. roseus flower petal expression system. We identified additional members of the known BIS and ORCA regulators. Further detailed study of the ORCA TFs suggests subfunctionalization of ORCA paralogs in terms of target gene-specific regulation and synergistic activity with the central jasmonate response regulator MYC2. Moreover, we identified specific amino acid residues within the ORCA DNA-binding domains that contribute to the differential regulation of some MIA pathway branches. Our results advance our understanding of TF paralog specificity for which, despite the common occurrence of closely related paralogs in many species, comparative studies are scarce.

5.
Elife ; 92020 03 25.
Article in English | MEDLINE | ID: mdl-32209225

ABSTRACT

Protein ubiquitination is a very diverse post-translational modification leading to protein degradation or delocalization, or altering protein activity. In Arabidopsis thaliana, two E3 ligases, BIG BROTHER (BB) and DA2, activate the latent peptidases DA1, DAR1 and DAR2 by mono-ubiquitination at multiple sites. Subsequently, these activated peptidases destabilize various positive growth regulators. Here, we show that two ubiquitin-specific proteases, UBP12 and UBP13, deubiquitinate DA1, DAR1 and DAR2, hence reducing their peptidase activity. Overexpression of UBP12 or UBP13 strongly decreased leaf size and cell area, and resulted in lower ploidy levels. Mutants in which UBP12 and UBP13 were downregulated produced smaller leaves that contained fewer and smaller cells. Remarkably, neither UBP12 nor UBP13 were found to be cleavage substrates of the activated DA1. Our results therefore suggest that UBP12 and UBP13 work upstream of DA1, DAR1 and DAR2 to restrict their protease activity and hence fine-tune plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Endopeptidases/metabolism , Gene Expression Regulation, Plant/physiology , Ubiquitin-Specific Proteases/metabolism , Ubiquitin/metabolism , Arabidopsis/genetics , Peptide Hydrolases/metabolism , Plant Development/physiology , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism
6.
Plant Mol Biol ; 99(1-2): 79-93, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30511331

ABSTRACT

KEY MESSAGE: Here, we used a hxk1 mutant in the Col-0 background. We demonstrated that HXK1 regulates cell proliferation and expansion early during leaf development, and that HXK1 is involved in sucrose-induced leaf growth stimulation independent of GPT2. Furthermore, we identified KINγ as a novel HXK1-interacting protein. In the last decade, extensive efforts have been made to unravel the underlying mechanisms of plant growth control through sugar availability. Signaling by the conserved glucose sensor HEXOKINASE1 (HXK1) has been shown to exert both growth-promoting and growth-inhibitory effects depending on the sugar levels, the environmental conditions and the plant species. Here, we used a hxk1 mutant in the Col-0 background to investigate the role of HXK1 during leaf growth in more detail and show that it is affected in both cell proliferation and cell expansion early during leaf development. Furthermore, the hxk1 mutant is less sensitive to sucrose-induced cell proliferation with no significant increase in final leaf growth after transfer to sucrose. Early during leaf development, transfer to sucrose stimulates expression of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) and represses chloroplast differentiation. However, in the hxk1 mutant GPT2 expression was still upregulated by transfer to sucrose although chloroplast differentiation was not affected, suggesting that GPT2 is not involved in HXK1-dependent regulation of leaf growth. Finally, using tandem affinity purification of protein complexes from cell cultures, we identified KINγ, a protein containing four cystathionine ß-synthase domains, as an interacting protein of HXK1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Hexokinase/metabolism , Monosaccharide Transport Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , Hexokinase/genetics , Monosaccharide Transport Proteins/genetics , Mutation , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Protein Serine-Threonine Kinases/genetics , Seedlings/enzymology , Seedlings/genetics , Seedlings/growth & development , Sucrose/metabolism
7.
Plant Physiol ; 178(1): 217-232, 2018 09.
Article in English | MEDLINE | ID: mdl-29991485

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), reduced expression of the transcriptional regulator PEAPOD2 (PPD2) results in propeller-like rosettes with enlarged and dome-shaped leaves. However, the molecular and cellular processes underlying this peculiar phenotype remain elusive. Here, we studied the interaction between PPD2 and NOVEL INTERACTOR OF JAZ (NINJA) and demonstrated that ninja loss-of-function plants produce rosettes with dome-shaped leaves similar to those of ppd mutants but without the increase in size. We showed that ninja mutants have a convex-shaped primary cell cycle arrest front, putatively leading to excessive cell division in the central leaf blade region. Furthermore, ppd and ninja mutants have a similar increase in the expression of CYCLIN D3;2 (CYCD3;2), and ectopic overexpression of CYCD3;2 phenocopies the ppd and ninja rosette and leaf shape phenotypes without affecting the size. Our results reveal a pivotal contribution of NINJA in leaf development, in addition to its well-studied function in jasmonate signaling, and imply a new function for D3-type cyclins in, at least partially, uncoupling the size and shape phenotypes of ppd leaves.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cyclin D3/genetics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Arabidopsis/anatomy & histology , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Cell Cycle Checkpoints/genetics , Cell Division/genetics , Cyclin D3/metabolism , Mutation , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Plants, Genetically Modified , Repressor Proteins/metabolism , Transcription Factors/metabolism
9.
Nat Commun ; 8: 15235, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28492275

ABSTRACT

Most living organisms developed systems to efficiently time environmental changes. The plant-clock acts in coordination with external signals to generate output responses determining seasonal growth and flowering time. Here, we show that two Arabidopsis thaliana transcription factors, FAR1 RELATED SEQUENCE 7 (FRS7) and FRS12, act as negative regulators of these processes. These proteins accumulate particularly in short-day conditions and interact to form a complex. Loss-of-function of FRS7 and FRS12 results in early flowering plants with overly elongated hypocotyls mainly in short days. We demonstrate by molecular analysis that FRS7 and FRS12 affect these developmental processes in part by binding to the promoters and repressing the expression of GIGANTEA and PHYTOCHROME INTERACTING FACTOR 4 as well as several of their downstream signalling targets. Our data reveal a molecular machinery that controls the photoperiodic regulation of flowering and growth and offer insight into how plants adapt to seasonal changes.


Subject(s)
Aldehyde Oxidoreductases/genetics , Arabidopsis/genetics , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Aldehyde Oxidoreductases/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Circadian Rhythm/physiology , Flowers/growth & development , Flowers/metabolism , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Light , Photoperiod , Signal Transduction , Transcription, Genetic
10.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Article in English | MEDLINE | ID: mdl-28420746

ABSTRACT

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Subject(s)
Arabidopsis/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Mitochondrial/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mitochondria/genetics , Mitochondrial Proteins/genetics
11.
Plant Physiol ; 173(2): 1269-1282, 2017 02.
Article in English | MEDLINE | ID: mdl-28003326

ABSTRACT

The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant's life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , LIM Domain Proteins/metabolism , Plant Leaves/growth & development , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation, Plant , LIM Domain Proteins/genetics , Organ Size/genetics , Plant Cells , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Ubiquitin-Protein Ligases/genetics
12.
Plant Physiol ; 173(1): 582-599, 2017 01.
Article in English | MEDLINE | ID: mdl-27879390

ABSTRACT

Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1-a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants-is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Aurora Kinases/metabolism , Microtubule-Associated Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Aurora Kinases/genetics , Cell Cycle , Gene Expression Regulation, Plant , Gene Knockout Techniques , Metaphase , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism
13.
Plant Cell ; 28(10): 2417-2434, 2016 10.
Article in English | MEDLINE | ID: mdl-27729396

ABSTRACT

Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Droughts , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome-Wide Association Study , Plant Leaves/genetics
14.
Plant Physiol ; 171(1): 590-605, 2016 05.
Article in English | MEDLINE | ID: mdl-26932234

ABSTRACT

Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Chloroplasts/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Leaves/growth & development , Sucrose/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Plant/drug effects , Mesophyll Cells/drug effects , Monosaccharide Transport Proteins/genetics , Mutation , Plant Leaves/cytology , Plant Leaves/metabolism , Seedlings/drug effects , Seedlings/growth & development , Sucrose/pharmacology
15.
Plant Cell ; 27(8): 2273-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26232487

ABSTRACT

Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Multiprotein Complexes/genetics , Plant Leaves/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Binding Sites/genetics , Cyclin D3/genetics , Cyclin D3/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Multiprotein Complexes/metabolism , Mutation , Phenotype , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified , Protein Binding , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism
16.
Plant Physiol ; 167(3): 817-32, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25604530

ABSTRACT

Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.


Subject(s)
14-3-3 Proteins/metabolism , Arabidopsis/physiology , Chloroplasts/metabolism , Photosynthesis , Plant Leaves/physiology , Trans-Activators/metabolism , 14-3-3 Proteins/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Cell Division/drug effects , Chlorophyll/metabolism , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Cytokinins/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Nitrogen/deficiency , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Plants, Genetically Modified , Trans-Activators/genetics
17.
Plant J ; 80(1): 172-84, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25041085

ABSTRACT

Although quantitative characterization of growth phenotypes is of key importance for the understanding of essential networks driving plant growth, the majority of growth-related genes are still being identified based on qualitative visual observations and/or single-endpoint quantitative measurements. We developed an in vitro growth imaging system (IGIS) to perform time-resolved analysis of rosette growth. In this system, Arabidopsis plants are grown in Petri dishes mounted on a rotating disk, and images of each plate are taken on an hourly basis. Automated image analysis was developed in order to obtain several growth-related parameters, such as projected rosette area, rosette relative growth rate, compactness and stockiness, over time. To illustrate the use of the platform and the resulting data, we present the results for the growth response of Col-0 plants subjected to three mild stress conditions. Although the reduction in rosette area was relatively similar at 19 days after stratification, the time-lapse analysis demonstrated that plants react differently to salt, osmotic and oxidative stress. The rosette area was altered at various time points during development, and leaf movement and shape parameters were also affected differently. We also used the IGIS to analyze in detail the growth behavior of mutants with enhanced leaf size. Analysis of several growth-related parameters over time in these mutants revealed several specificities in growth behavior, underlining the high complexity of leaf growth coordination. These results demonstrate that time-resolved imaging of in vitro rosette growth generates a better understanding of growth phenotypes than endpoint measurements.


Subject(s)
Arabidopsis/growth & development , Image Processing, Computer-Assisted/methods , Arabidopsis/genetics , Arabidopsis/radiation effects , Genotype , Image Processing, Computer-Assisted/instrumentation , Light , Mutation , Phenotype , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plants, Genetically Modified , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects , Time Factors
18.
Elife ; 3: e02252, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24843021

ABSTRACT

Several genes positively influence final leaf size in Arabidopsis when mutated or overexpressed. The connections between these growth regulators are still poorly understood although such knowledge would further contribute to understand the processes driving leaf growth. In this study, we performed a combinatorial screen with 13 transgenic Arabidopsis lines with an increased leaf size. We found that from 61 analyzed combinations, 39% showed an additional increase in leaf size and most resulted from a positive epistasis on growth. Similar to what is found in other organisms in which such an epistasis assay was performed, only few genes were highly connected in synergistic combinations as we observed a positive epistasis in the majority of the combinations with samba, BRI1(OE) or SAUR19(OE). Furthermore, positive epistasis was found with combinations of genes with a similar mode of action, but also with genes which affect distinct processes, such as cell proliferation and cell expansion.DOI: http://dx.doi.org/10.7554/eLife.02252.001.


Subject(s)
Arabidopsis/genetics , Epistasis, Genetic , Arabidopsis/growth & development , Genes, Plant , Plant Leaves/growth & development
19.
Plant Mol Biol ; 85(3): 233-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549883

ABSTRACT

The establishment of the photosynthetic apparatus during chloroplast development creates a high demand for iron as a redox metal. However, iron in too high quantities becomes toxic to the plant, thus plants have evolved a complex network of iron uptake and regulation mechanisms. Here, we examined whether four of the subgroup Ib basic helix-loop-helix transcription factors (bHLH38, bHLH39, bHLH100, bHLH101), previously implicated in iron homeostasis in roots, also play a role in regulating iron metabolism in developing leaves. These transcription factor genes were strongly up-regulated during the transition from cell proliferation to expansion, and thus sink-source transition, in young developing leaves of Arabidopsis thaliana. The four subgroup Ib bHLH genes also showed reduced expression levels in developing leaves of plants treated with norflurazon, indicating their expression was tightly linked to the onset of photosynthetic activity in young leaves. In addition, we provide evidence for a mechanism whereby the transcriptional regulators SAC51 and TCP20 antagonistically regulate the expression of these four subgroup Ib bHLH genes. A loss-of-function mutant analysis also revealed that single mutants of bHLH38, bHLH39, bHLH100, and bHLH101 developed smaller rosettes than wild-type plants in soil. When grown in agar plates with reduced iron concentration, triple bhlh39 bhlh100 bhlh101 mutant plants were smaller than wild-type plants. However, measurements of the iron content in single and multiple subgroup Ib bHLH genes, as well as transcript profiling of iron response genes during early leaf development, do not support a role for bHLH38, bHLH39, bHLH100, and bHLH101 in iron homeostasis during early leaf development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Chloroplasts/physiology , Plant Leaves/cytology , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation, Plant , Herbicides/pharmacology , Iron , Photosystem II Protein Complex , Plant Leaves/drug effects , Pyridazines/pharmacology , Nicotiana/cytology , Transcription Factors/genetics , Transcriptome
20.
Plant Cell ; 26(1): 210-29, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24443518

ABSTRACT

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Repressor Proteins/physiology , Adenosine Triphosphatases/metabolism , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Cell Differentiation , Cell Proliferation , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/physiology , Cyclin B/genetics , Cyclin B/metabolism , Genome, Plant , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/growth & development , Promoter Regions, Genetic , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...