Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(27): 25273-8, 2001 Jul 06.
Article in English | MEDLINE | ID: mdl-11306569

ABSTRACT

Amylosucrase (E.C. 2.4.1.4) is a member of Family 13 of the glycoside hydrolases (the alpha-amylases), although its biological function is the synthesis of amylose-like polymers from sucrose. The structure of amylosucrase from Neisseria polysaccharea is divided into five domains: an all helical N-terminal domain that is not similar to any known fold, a (beta/alpha)(8)-barrel A-domain, B- and B'-domains displaying alpha/beta-structure, and a C-terminal eight-stranded beta-sheet domain. In contrast to other Family 13 hydrolases that have the active site in the bottom of a large cleft, the active site of amylosucrase is at the bottom of a pocket at the molecular surface. A substrate binding site resembling the amylase 2 subsite is not found in amylosucrase. The site is blocked by a salt bridge between residues in the second and eight loops of the (beta/alpha)(8)-barrel. The result is an exo-acting enzyme. Loop 7 in the amylosucrase barrel is prolonged compared with the loop structure found in other hydrolases, and this insertion (forming domain B') is suggested to be important for the polymer synthase activity of the enzyme. The topology of the B'-domain creates an active site entrance with several ravines in the molecular surface that could be used specifically by the substrates/products (sucrose, glucan polymer, and fructose) that have to get in and out of the active site pocket.


Subject(s)
Glucosyltransferases/metabolism , alpha-Amylases/metabolism , Amino Acid Sequence , Binding Sites , Glucosyltransferases/chemistry , Models, Chemical , Models, Molecular , Molecular Sequence Data , Protein Folding
2.
J Bacteriol ; 181(2): 375-81, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9882648

ABSTRACT

The Neisseria polysaccharea gene encoding amylosucrase was subcloned and expressed in Escherichia coli. Sequencing revealed that the deduced amino acid sequence differs significantly from that previously published. Comparison of the sequence with that of enzymes of the alpha-amylase family predicted a (beta/alpha)8-barrel domain. Six of the eight highly conserved regions in amylolytic enzymes are present in amylosucrase. Among them, four constitute the active site in alpha-amylases. These sites were also conserved in the sequence of glucosyltransferases and dextransucrases. Nevertheless, the evolutionary tree does not show strong homology between them. The amylosucrase was purified by affinity chromatography between fusion protein glutathione S-transferase-amylosucrase and glutathione-Sepharose 4B. The pure enzyme linearly elongated some branched chains of glycogen, to an average degree of polymerization of 75.


Subject(s)
Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Neisseria/enzymology , Neisseria/genetics , Protein Structure, Secondary , Amino Acid Sequence , Base Sequence , Chromatography, Affinity , Cloning, Molecular , Conserved Sequence , DNA Primers , Escherichia coli , Evolution, Molecular , Glucosyltransferases/metabolism , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...