Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 118: 275-286, 2024 May.
Article in English | MEDLINE | ID: mdl-38447884

ABSTRACT

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Subject(s)
Neuroinflammatory Diseases , Pancreatic Neoplasms , Mice , Animals , Brain , Inflammation , Hippocampus
2.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563257

ABSTRACT

Recently, a paradigm shift has been established for oncolytic viruses (OVs) as it was shown that the immune system plays an important role in the specific killing of tumor cells by OVs. OVs have the intrinsic capacity to provide the right signals to trigger anti-tumor immune responses, on the one hand by delivering virus-derived innate signals and on the other hand by inducing immunogenic cell death (ICD), which is accompanied by the release of various damage-associated molecules from infected tumor cells. Here, we determined the ICD-inducing capacity of Talimogene laherparepvec (T-VEC), a herpes simplex virus type 1 based OV, and benchmarked this to other previously described ICD (e.g., doxorubicin) and non-ICD inducing agents (cisplatin). Furthermore, we studied the capability of T-VEC to induce the maturation of human BDCA-1+ myeloid dendritic cells (myDCs). We found that T-VEC treatment exerts direct and indirect anti-tumor effects as it induces tumor cell death that coincides with the release of hallmark mediators of ICD, while simultaneously contributing to the maturation of BDCA-1+ myDCs. These results unequivocally cement OVs in the category of cancer immunotherapy.


Subject(s)
Herpesvirus 1, Human , Melanoma , Oncolytic Virotherapy , Oncolytic Viruses , Dendritic Cells/pathology , Humans , Immunogenic Cell Death , Immunotherapy/methods , Melanoma/pathology , Oncolytic Virotherapy/methods
3.
Mol Psychiatry ; 27(4): 2355-2368, 2022 04.
Article in English | MEDLINE | ID: mdl-35181756

ABSTRACT

The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.


Subject(s)
Amino Acid Transport System y+ , Cystine , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Cysteine , Cystine/metabolism , Glutamic Acid , Hippocampus/metabolism , Longevity , Male , Mice , Mice, Inbred C57BL
4.
Front Immunol ; 12: 733506, 2021.
Article in English | MEDLINE | ID: mdl-34777344

ABSTRACT

T-VEC, a HSV-1 derived oncolytic virus, is approved for the treatment of advanced melanoma. The mechanisms that underly the systemic anti-tumor effect that is seen following intratumoral injection have not yet been studied but are likely to be mediated by myeloid dendritic cells (myDC) that initiate an adaptive immune response. In this study we could demonstrate that T-VEC is non-toxic for human myDC. T-VEC and a T-VEC oncolysate of melanoma cell lines were able to mature human myDC. myDC were able to take up lysed melanoma cells and cross-present melanoma-derived tumor antigens to antigen-specific T cells. Our results support the possible role of myDC as mediators of an adaptive anti-tumor effect and intratumoral co-administration of T-VEC plus autologous myDC could be a complementary treatment option. A clinical trial that investigates this hypothesis is currently ongoing.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Biological Products/pharmacology , Dendritic Cells/immunology , Immunotherapy/methods , Melanoma/therapy , Myeloid Cells/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Antigens, CD1/metabolism , Antigens, Neoplasm/immunology , Cross-Priming , Glycoproteins/metabolism , Herpesvirus 1, Human , Humans , Lymphocyte Activation , Melanoma/immunology , Oncolytic Virotherapy , Phagocytosis , T-Lymphocytes/drug effects
5.
J Exp Med ; 217(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32315377

ABSTRACT

Aberrant detection of endogenous nucleic acids by the immune system can cause inflammatory disease. The scaffold function of the signaling kinase RIPK1 limits spontaneous activation of the nucleic acid sensor ZBP1. Consequently, loss of RIPK1 in keratinocytes induces ZBP1-dependent necroptosis and skin inflammation. Whether nucleic acid sensing is required to activate ZBP1 in RIPK1-deficient conditions and which immune pathways are associated with skin disease remained open questions. Using knock-in mice with disrupted ZBP1 nucleic acid-binding activity, we report that sensing of endogenous nucleic acids by ZBP1 is critical in driving skin pathology characterized by antiviral and IL-17 immune responses. Inducing ZBP1 expression by interferons triggers necroptosis in RIPK1-deficient keratinocytes, and epidermis-specific deletion of MLKL prevents disease, demonstrating that cell-intrinsic events cause inflammation. These findings indicate that dysregulated sensing of endogenous nucleic acid by ZBP1 can drive inflammation and may contribute to the pathogenesis of IL-17-driven inflammatory skin conditions such as psoriasis.


Subject(s)
Inflammation/pathology , Keratinocytes/metabolism , Keratinocytes/pathology , Necroptosis , Nucleic Acids/metabolism , RNA-Binding Proteins/metabolism , Skin/pathology , Animals , HEK293 Cells , Humans , Inflammation/immunology , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein Kinases/metabolism
6.
J Leukoc Biol ; 102(3): 631-643, 2017 09.
Article in English | MEDLINE | ID: mdl-28720686

ABSTRACT

Our understanding of the mechanisms responsible for cancer development has increased enormously over the last decades. However, for many cancers, this has not been translated into a significant improvement in overall survival, and overall mortality remains high. Treatment for many malignancies remains based on surgery, chemotherapy, and radiotherapy. Significant progress has been made toward the development of more specific, more potent, and less invasive treatment modalities, but such targeted therapies remain the exception for most cancers. Thus, cancer therapies based on a different mechanism of action should be explored. The immune system plays an important role in keeping tumor growth at bay. However, in many cases, these responses are not strong enough to keep tumor growth under control. Thus, immunotherapy aims to boost the immune system to suppress tumor growth efficiently. This has been demonstrated by the recent successes of immune checkpoint therapy in several cancers. Oncolytic viruses (OVs) are another exciting class of immunotherapy agent. As well as replicating selectively within and killing tumor cells, OVs are able to elicit potent anti-tumor immune responses. Therapeutic vaccination with OVs, also referred to as cancer virotherapy, can thus be tailored to elicit vigorous cellular immune responses and even target individual malignancies in a personalized manner. In this review, we will describe the intricate link among oncolytic virotherapy, tumor immunology, and immunogenic cell death (ICD) and discuss ways to harness optimally their potential for future cancer therapy.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/immunology , Animals , Cell Death/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...