Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38187958

ABSTRACT

In an era characterized by the convergence of cutting-edge technologies, the world of healthcare and public health is on the brink of a profound transformation that will shape the future of medicine and wellness. This transformation is not merely an incremental step forward but a paradigm shift driven by the synergistic integration of digital twins, blockchain technology, artificial intelligence, and multi-omics platforms collectively propelling us into uncharted territory. Integrating these innovations holds the potential to rewrite the rules of engagement in clinical trials, revamp the strategies for preventing public health crises, and redefine how we manage, share, and secure healthcare data. As we embark on this journey of exploration and innovation, we find ourselves at a pivotal juncture, akin to the invention of the microscope in biology or the discovery of antibiotics in medicine. We are at the crossroads of a new era with immense promise and transformative power.

2.
Exp Ther Med ; 21(3): 245, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33603853

ABSTRACT

New rehabilitation strategies enabled by technological developments are challenging the prevailing concept of there being a limited window for functional recovery after stroke. In this study, we examined the utility of a robot-assisted therapy used in combination with a serious game as a rehabilitation and motor assessment tool in patients with chronic stroke. We evaluated 928 game rounds from 386 training sessions of 8 patients who had suffered an ischemic stroke affecting middle cerebral artery territory that incurred at least 6 months prior. Motor function was assessed with clinical motor scales, including the Fugl-Meyer upper extremity (FM UE) scale, Action Research Arm Test, Modified Ashworth scale and the Box and Blocks test. Robotic device output measures (mean force, force-position correlation) and serious game score elements (collisions, rewards and total score) were calculated. A total of 2 patients exhibited a marginal improvement after a 10-week training protocol according to the FM UE scale and an additional patient exhibited a significant improvement according to Box and Blocks test. Motor scales showed strong associations of robotic device parameters and game metrics with clinical motor scale scores, with the strongest correlations observed for the mean force (0.677<Ρ<0.869), followed by the number of collisions (-0.670<Ρ<-0.585). Linear regression analysis showed that these indices were independent predictors of motor scale scores. In conclusion, a robotic device linked to a serious game can be used by patients with chronic stroke and induce at least some clinical improvements in motor performance. Robotic device output parameters and game score elements associate strongly with clinical motor scales and have the potential to be used as predictors in models of rehabilitation progress.

3.
J Vis Exp ; (153)2019 11 23.
Article in English | MEDLINE | ID: mdl-31814610

ABSTRACT

Functional magnetic resonance imaging (fMRI) is a non-invasive magnetic resonance imaging technique that images brain activation in vivo, using endogenous deoxyhemoglobin as an endogenous contrast agent to detect changes in blood-level-dependent oxygenation (BOLD effect). We combined fMRI with a novel robotic device (MR-compatible hand-induced robotic device [MR_CHIROD]) so that a person in the scanner can execute a controlled motor task, hand-squeezing, which is a very important hand movement to study in neurological motor disease. We employed parallel imaging (generalized auto-calibrating partially parallel acquisitions [GRAPPA]), which allowed higher spatial resolution resulting in increased sensitivity to BOLD. The combination of fMRI with the hand-induced robotic device allowed precise control and monitoring of the task that was executed while a participant was in the scanner; this may prove to be of utility in rehabilitation of hand motor function in patients recovering from neurological deficits (e.g., stroke). Here we outline the protocol for using the current prototype of the MR_CHIROD during an fMRI scan.


Subject(s)
Cerebrovascular Disorders/physiopathology , Hand Strength , Magnetic Resonance Imaging/instrumentation , Robotics , Cerebrovascular Disorders/rehabilitation , Hand/physiopathology , Humans , Magnetic Resonance Imaging/methods , Robotics/methods
4.
Radiology ; 291(3): 570-580, 2019 06.
Article in English | MEDLINE | ID: mdl-30990383

ABSTRACT

Advances in virtual immersive and augmented reality technology, commercially available for the entertainment and gaming industry, hold potential for education and clinical use in medicine and the field of medical imaging. Radiology departments have begun exploring the use of these technologies to help with radiology education and clinical care. The purpose of this review article is to summarize how three institutions have explored using virtual and augmented reality for radiology.


Subject(s)
Augmented Reality , Radiography/methods , Radiology/education , Virtual Reality , Communication , Humans , Information Dissemination , Smartphone
SELECTION OF CITATIONS
SEARCH DETAIL
...