Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8770, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627575

ABSTRACT

Oxygen availability can have profound effects on cell fate decisions and survival, in part by regulating expression of hypoxia-inducible factors (HIFs). In the ovary, HIF expression has been characterised in granulosa cells, however, any requirement in oocytes remains relatively undefined. Here we developed a Hif2a/Epas1 germline-specific knockout mouse line in which females were fertile, however produced 40% fewer pups than controls. No defects in follicle development were detected, and quality of MII oocytes was normal, as per assessments of viability, intracellular reactive oxygen species, and spindle parameters. However, a significant diminishment of the primordial follicle pool was evident in cKO females that was attributed to accelerated follicle loss from postnatal day 6 onwards, potentially via disruption of the autophagy pathway. These data demonstrate the importance of HIF signalling in oocytes, particularly at the primordial follicle stage, and lend to the importance of controlling oxygen tension in the development of in vitro growth and maturation approaches for assisted reproduction.


Subject(s)
Ovarian Follicle , Ovary , Animals , Female , Mice , Granulosa Cells/metabolism , Oocytes/metabolism , Ovarian Follicle/physiology , Oxygen/metabolism
2.
Front Cell Dev Biol ; 10: 782996, 2022.
Article in English | MEDLINE | ID: mdl-35433696

ABSTRACT

Spermatogonial stem cell (SSC) function is essential for male fertility, and these cells hold potential therapeutic value spanning from human infertility treatments to wildlife conservation. As in vitro culture is likely to be an integral component of many therapeutic pipelines, we have elected to explore changes in gene expression occurring in undifferentiated spermatogonia in culture that may be intertwined with the temporal reduction in regenerative capacity that they experience. Single cell RNA-sequencing analysis was conducted, comparing undifferentiated spermatogonia retrieved from the adult mouse testis with those that had been subjected to 10 weeks of in vitro culture. Although the majority of SSC signature genes were conserved between the two populations, a suite of differentially expressed genes were also identified. Gene ontology analysis revealed upregulated expression of genes involved in oxidative phosphorylation in cultured spermatogonia, along with downregulation of integral processes such as DNA repair and ubiquitin-mediated proteolysis. Indeed, our follow-up analyses have provided the first depiction of a significant accumulation of ubiquitinated proteins in cultured spermatogonia, when compared to those residing in the testis. The data produced in this manuscript will provide a valuable platform for future studies looking to improve SSC culture approaches and assess their safety for utilisation in therapeutic pipelines.

3.
Stem Cell Reports ; 16(6): 1555-1567, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33961790

ABSTRACT

Maintenance and self-renewal of the spermatogonial stem cell (SSC) population is the cornerstone of male fertility. Here, we have identified a key role for the nucleosome remodeling protein CHD4 in regulating SSC function. Gene expression analyses revealed that CHD4 expression is highly enriched in the SSC population in the mouse testis. Using spermatogonial transplantation techniques it was established that loss of Chd4 expression significantly impairs SSC regenerative capacity, causing a ∼50% reduction in colonization of recipient testes. An scRNA-seq comparison revealed reduced expression of "self-renewal" genes following Chd4 knockdown, along with increased expression of signature progenitor genes. Co-immunoprecipitation analyses demonstrated that CHD4 regulates gene expression in spermatogonia not only through its traditional association with the remodeling complex NuRD, but also via interaction with the GDNF-responsive transcription factor SALL4. Cumulatively, the results of this study depict a previously unappreciated role for CHD4 in controlling fate decisions in the spermatogonial pool.


Subject(s)
Adult Germline Stem Cells/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Stem Cells/metabolism , Testis/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Self Renewal , DNA Helicases/genetics , Gene Expression Regulation , Gene Knockdown Techniques/methods , Male , Mice , Mice, Inbred Strains , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...