Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2012: 935483, 2012.
Article in English | MEDLINE | ID: mdl-22848785

ABSTRACT

Severe endurance training (overtraining) may cause underperformance related to muscle oxidative stress and cardiomyocyte alterations. Currently, such relationship has not been empirically established. In this study, Wistar rats (n = 19) underwent eight weeks of daily exercise sessions followed by three overtraining weeks in which the daily frequency of exercise sessions increased. After the 11th training week, eight rats exhibited a reduction of 38% in performance (nonfunctional overreaching group (NFOR)), whereas eleven rats exhibited an increase of 18% in performance (functional overreaching group (FOR)). The red gastrocnemius of NFOR presented significantly lower citrate synthase activity compared to FOR, but similar to that of the control. The activity of mitochondrial complex IV in NFOR was lower than that of the control and FOR. This impaired mitochondrial adaptation in NFOR was associated with increased antioxidant enzyme activities and increased lipid peroxidation (in muscle and plasma) relative to FOR and control. Cardiomyocyte apoptosis was higher in NFOR. Plasma creatine kinase levels were unchanged. We observed that some rats that presented evidence of muscle oxidative stress are also subject to cardiomyocyte apoptosis under endurance overtraining. Blood lipid peroxides may be a suitable biomarker for muscle oxidative stress that is unrelated to severe muscle damage.


Subject(s)
Apoptosis , Muscle, Skeletal/pathology , Myocytes, Cardiac/pathology , Oxidative Stress , Physical Conditioning, Animal , Physical Endurance , Animals , Antioxidants/metabolism , Biomarkers/blood , Catalase/metabolism , Citrate (si)-Synthase/metabolism , Creatine Kinase/blood , Electron Transport Chain Complex Proteins/metabolism , Glutathione Reductase/metabolism , Heart Ventricles/pathology , Lipid Peroxides/blood , Male , Mitochondria/metabolism , Muscle, Skeletal/enzymology , Myocardium/pathology , Myocytes, Cardiac/enzymology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
2.
Med Sci Sports Exerc ; 41(5): 1155-63, 2009 May.
Article in English | MEDLINE | ID: mdl-19346970

ABSTRACT

PURPOSE: Development of an endurance training-overtraining protocol for Wistar rats that includes increased workload and is characterized by analyses of performance and biomarkers. METHODS: The running protocol lasted 11 wk: 8 wk of daily exercise sessions followed by 3 wk of increasing training frequency (two, three, and four times), with decreasing recovery time between sessions (4, 3, and 2 h) to cause an imbalance between overload and recovery. The performance tests were made before training (T1) and after the 4th (T2), 8th (T3), 9th (T4), 10th (T5), and 11th (T6) training weeks. All rats showed significantly increased performance at T4, at which time eight rats, termed the trained group (Tr), were sacrificed for blood and muscle assays. After T6, two groups were distinguishable by differences in the slope (alpha) of a line fitted to the individual performances at T4, T5, and T6: nonfunctional overreaching (NFOR; alpha < -15.05 kg x m) and functional overreaching (FOR; alpha >or= -15.05 kg x m). RESULTS: Data were presented as mean +/- SD. FOR maintained the performance at T6 similar to Tr at T4 (530.6 +/- 85.3 and 487.5 +/- 61.4 kg x m, respectively). The FOR and the Tr groups showed higher muscle citrate synthase activity (approximately 40%) and plasma glutamine/glutamate ratio (Gm/Ga; 4.5 +/- 1.7 and 4.5 +/- 0.9, respectively) than the sedentary control (CO) group (2.8 +/- 0.5). The NFOR group lost the performance acquired at T4 (407.3 +/- 88.2 kg x m) after T6 (280.5 +/- 93.1 kg x m) and exhibited sustained leukocytosis. NFOR's Gm/Ga (3.1 +/- 0.2) and muscle citrate synthase activity were similar to CO values. CONCLUSIONS: The decline in performance in the NFOR group could be related to the decrease in muscle oxidative capacity. We observed a trend in the Gm/Ga and leukocytosis that is similar to what has been sometimes observed in overtrained humans. This controlled training-overtraining animal model may be useful for seeking causative mechanisms of performance decline.


Subject(s)
Models, Animal , Physical Conditioning, Animal/physiology , Animals , Citrate (si)-Synthase/biosynthesis , Citrate (si)-Synthase/blood , Glutamine/biosynthesis , Glutamine/blood , Leukocytes , Male , Rats , Rats, Wistar
3.
J Appl Physiol (1985) ; 102(3): 1229-34, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17082370

ABSTRACT

We propose a communicating-vessels system to measure body volume in live rats through water level detection by hydrostatic weighing. The reproducibility, accuracy, linearity, and reliability of this apparatus were evaluated in two tests using previously weighed water or six aluminum cylinders of known volume after proper system calibration. The applicability of this apparatus to measurement of live animals (Wistar rats) was tested in a transversal experiment with five rats, anesthetized and nonanesthetized. We took 18 measurements of the volume under each condition (anesthetized and nonanesthetized), totaling 90 measurements. The addition of water volumes (50-700 ml) produced a regression equation with a slope of 1.0006 +/- 0.0017, intercept of 0.75 +/- 0.81 (R(2) = 0.99999, standard error of estimate = 0.58 ml), and bias of approximately 1 ml. The differences between cylinders of known volumes and volumes calculated by the system were <0.4 ml. Mean volume errors were 0.01-0.07%. Among the live models, the difference between the volumes obtained for anesthetized and nonanesthetized rats was 0.31 +/- 2.34 (SD) ml (n = 90). These data showed that animal movement does not interfere with the volume measured by the proposed apparatus, and neither anesthesia nor fur shaving is needed for this procedure. Nevertheless, some effort should be taken to eliminate air bubbles trapped in the apparatus or the fur. The proposed apparatus for measuring rat body volume is inexpensive and may be useful for a range of scientific purposes.


Subject(s)
Body Weights and Measures/instrumentation , Animals , Body Weights and Measures/methods , Male , Rats , Rats, Wistar , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...