Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 10: 915335, 2022.
Article in English | MEDLINE | ID: mdl-35860631

ABSTRACT

This paper reports on the preparation of Er3+/Yb3+/Tm3+, Er3+/Yb3+/Nd3+, and Er3+/Tm3+/Nd3+ triply doped and Er3+-doped SiO2-Ta2O5 glass ceramic nanocomposites and active planar waveguides by the sol-gel process using the dip-coating technique as deposition method. The investigation of their structural, morphological, and luminescent properties using XRD, AFM, and photoluminescence analysis, are reported here. The XRD results showed the presence of L-Ta2O5 nanocrystals dispersed in the SiO2-based amorphous host for all the nanocomposites and films. The rare earth ion (RE3+) doping concentration affected both the crystallinity, and the crystallite sizes of the Ta2O5 dispersed into SiO2-Ta2O5 nanocomposites and waveguides. AFM characterization revealed crack free and smooth surface roughness and differences in viscoelasticity on the Er3+-doped SiO2-Ta2O5 films surface, which allows the identification of Ta2O5 nanocrystals on the SiO2 amorphous host. The Er3+ doped and triply doped SiO2-Ta2O5 nanocomposites displayed broad- and super broadband NIR emissions with a FWHM up to 173 nm achieved in the telecom wavelengths. The lifetime of the 4I13/2 emitting level of the Er3+-doped SiO2-Ta2O5 waveguides is strongly dependent on Er3+ concentration and an emission quenching was negligible up to 0.81 mol%. The structural and luminescent investigations indicated that RE3+-doped SiO2-Ta2O5 glass ceramics are promising candidates for photonic applications in optical devices operating in wide wavelengths at the telecom bands.

2.
Front Chem ; 9: 712659, 2021.
Article in English | MEDLINE | ID: mdl-34368084

ABSTRACT

Among several optical non-contact thermometry methods, luminescence thermometry is the most versatile approach. Lanthanide-based luminescence nanothermometers may exploit not only downshifting, but also upconversion (UC) mechanisms. UC-based nanothermometers are interesting for biological applications: they efficiently convert near-infrared radiation to visible light, allowing local temperatures to be determined through spectroscopic investigation. Here, we have synthesized highly crystalline Er3+, Yb3+ co-doped upconverting KGd3F10 nanoparticles (NPs) by the EDTA-assisted hydrothermal method. We characterized the structure and morphology of the obtained NPs by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and dynamic light scattering. Nonlinear spectroscopic studies with the Er3+, Yb3+: KGd3F10 powder showed intense green and red emissions under excitation at 980 and 1,550 nm. Two- and three-photon processes were attributed to the UC mechanisms under excitation at 980 and 1,550 nm. Strong NIR emission centered at 1,530 nm occurred under low 980-nm power densities. Single NPs presented strong green and red emissions under continuous wave excitation at 975.5 nm, so we evaluated their use as primary nanothermometers by employing the Luminescence Intensity Ratio technique. We determined the temperature felt by the dried NPs by integrating the intensity ratio between the thermally coupled 2H11/2→4I15/2 and 4S3/2→4I15/2 levels of Er3+ ions in the colloidal phase and at the single NP level. The best thermal sensitivity of a single Er3+, Yb3+: KGd3F10 NP was 1.17% at the single NP level for the dry state at 300 K, indicating potential application of this material as accurate nanothermometer in the thermal range of biological interest. To the best of our knowledge, this is the first promising thermometry based on single KGd3F10 particles, with potential use as biomarkers in the NIR-II region.

3.
Nano Lett ; 17(2): 778-787, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28099025

ABSTRACT

We identify the physical mechanisms responsible for the optical homogeneous broadening in Eu3+:Y2O3 nanoparticles to determine whether rare-earth crystals can be miniaturized to volumes less than λ3 while preserving their appeal for quantum technology hardware. By studying how the homogeneous line width depends on temperature, applied magnetic field, and measurement time scale, the dominant broadening interactions for various temperature ranges above 3 K were characterized. Below 3 K the homogeneous line width is dominated by an interaction not observed in bulk crystal studies. These measurements demonstrate that broadening due to size-dependent phonon interactions is not a significant contributor to the homogeneous line width, which contrasts previous studies in rare-earth ion nanocrystals. Importantly, the results provide strong evidence that for the 400 nm diameter nanoparticles under study the minimum line width achieved (45 ± 1 kHz at 1.3 K) is not fundamentally limited. In addition, we highlight that the expected broadening caused by electric field fluctuations arising from surface charges is comparable to the observed broadening. Under the assumption that such Stark broadening is a significant contribution to the homogeneous line width, several strategies for reducing this line width to below 10 kHz are discussed. Furthermore, it is demonstrated that the Eu3+ hyperfine state lifetime is sufficiently long to preserve spectral features for time scales up to 1 s. These results allow integrated rare-earth ion quantum optics to be pursued at a submicron scale and, hence, open up directions for greater scaling of rare-earth quantum technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...