Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(3): e2307747, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37990971

ABSTRACT

Current treatments for modulating the glial-mediated inflammatory response after spinal cord injury (SCI) have limited ability to improve recovery. This is quite likely due to the lack of a selective therapeutic approach acting on microgliosis and astrocytosis, the glia components most involved after trauma, while maximizing efficacy and minimizing side effects. A new nanogel that can selectively release active compounds in microglial cells and astrocytes is developed and characterized. The degree of selectivity and subcellular distribution of the nanogel is evaluated by applying an innovative super-resolution microscopy technique, expansion microscopy. Two different administration schemes are then tested in a SCI mouse model: in an early phase, the nanogel loaded with Rolipram, an anti-inflammatory drug, achieves significant improvement in the animal's motor performance due to the increased recruitment of microglia and macrophages that are able to localize the lesion. Treatment in the late phase, however, gives opposite results, with worse motor recovery because of the widespread degeneration. These findings demonstrate that the nanovector can be selective and functional in the treatment of the glial component in different phases of SCI. They also open a new therapeutic scenario for tackling glia-mediated inflammation after neurodegenerative events in the central nervous system.


Subject(s)
Polyethylene Glycols , Polyethyleneimine , Spinal Cord Injuries , Mice , Animals , Nanogels/therapeutic use , Spinal Cord Injuries/pathology , Neuroglia/pathology , Microglia
2.
Neural Regen Res ; 18(8): 1672-1678, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36751778

ABSTRACT

Alzheimer's disease (AD) is characterized by complex etiology, long-lasting pathogenesis, and cell-type-specific alterations. Currently, there is no cure for AD, emphasizing the urgent need for a comprehensive understanding of cell-specific pathology. Astrocytes, principal homeostatic cells of the central nervous system, are key players in the pathogenesis of neurodegenerative diseases, including AD. Cellular models greatly facilitate the investigation of cell-specific pathological alterations and the dissection of molecular mechanisms and pathways. Tumor-derived and immortalized astrocytic cell lines, alongside the emerging technology of adult induced pluripotent stem cells, are widely used to study cellular dysfunction in AD. Surprisingly, no stable cell lines were available from genetic mouse AD models. Recently, we established immortalized hippocampal astroglial cell lines from amyloid-ß precursor protein/presenilin-1/Tau triple-transgenic (3xTg)-AD mice (denominated as wild type (WT)- and 3Tg-iAstro cells) using retrovirus-mediated transduction of simian virus 40 large T-antigen and propagation without clonal selection, thereby maintaining natural heterogeneity of primary cultures. Several groups have successfully used 3Tg-iAstro cells for single-cell and omics approaches to study astrocytic AD-related alterations of calcium signaling, mitochondrial dysfunctions, disproteostasis, altered homeostatic and signaling support to neurons, and blood-brain barrier models. Here we provide a comparative overview of the most used models to study astrocytes in vitro, such as primary culture, tumor-derived cell lines, immortalized astroglial cell lines, and induced pluripotent stem cell-derived astrocytes. We conclude that immortalized WT- and 3Tg-iAstro cells provide a non-competitive but complementary, low-cost, easy-to-handle, and versatile cellular model for dissection of astrocyte-specific AD-related alterations and preclinical drug discovery.

3.
J Cereb Blood Flow Metab ; 43(5): 680-693, 2023 05.
Article in English | MEDLINE | ID: mdl-36655331

ABSTRACT

Brain ischemia is a common acute injury resulting from impaired blood flow to the brain. Translation of effective drug candidates from experimental models to patients has systematically failed. The use of human induced pluripotent stem cells (iPSC) offers new opportunities to gain translational insights into diseases including brain ischemia. We used a human 3D self-assembling iPSC-derived model (human cortical organoids, hCO) to characterize the effects of ischemia caused by oxygen-glucose deprivation (OGD). hCO exposed to 2 h or 8 h of OGD had neuronal death and impaired neuronal network complexity, measured in whole-mounting microtubule-associated protein 2 (MAP-2) immunostaining. Neuronal vulnerability was reflected by a reduction in MAP-2 mRNA levels, and increased release of neurofilament light chain (NfL) in culture media, proportional to OGD severity. Glial fibrillary acidic protein (GFAP) gene or protein levels did not change in hCO, but their release in medium increased after prolonged OGD. In conclusion, this human 3D iPSC-based in vitro model of brain ischemic injury is characterized by marked neuronal injury reflected by the release of the translational biomarker NfL which is relevant for testing neuroprotective strategies.


Subject(s)
Brain Ischemia , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Brain Ischemia/metabolism , Oxygen/metabolism , Cell Death , Glucose/pharmacology , Organoids/metabolism , Cells, Cultured
4.
Toxicology ; 462: 152935, 2021 10.
Article in English | MEDLINE | ID: mdl-34509577

ABSTRACT

Imidacloprid is an insecticide belonging to neonicotinoids, a class of agonists of the nicotinic acetylcholine receptors that shows higher affinities in insects compared to mammals. However, recent evidence show that neonicotinoids can bind to the mammalian receptors, leading to detrimental responses in cultured neurons. We developed an analytical strategy which uses mass spectrometry with multiple reaction monitoring (targeted approach) and high-resolution acquisitions (untargeted approach), which were applied to quantify imidacloprid and to identify its metabolites in biological tissues after oral treatments of mice. Mouse dams were treated with doses from 0.118 mg/kg bw day up to 41 mg/kg day between gestational days 6-9. Results showed quantifiable levels of imidacloprid in plasma (from 30.48 to 5705 ng/mL) and brain (from 20.48 to 5852 ng/g) of treated mice, proving the passage through the mammalian blood-brain barrier with a high correspondence between doses and measured concentrations. Untargeted analyses allowed the identification of eight metabolites including imidacloprid-olefin, hydroxy-imidacloprid dihydroxy-imidacloprid, imidacloprid-nitrosimine, desnitro-imidacloprid, 6-chloronicotinic acid, 5-(methylsulfanyl)pyridine-2-carboxylic acid and N-imidazolidin-2-ylidenenitramide in plasma and brain. Moreover, analysis of embryonic tissues after oral treatment of mouse dams showed detectable levels of imidacloprid (816.6 ng/g after a dose of 4.1 mg/Kg bw day and 5646 ng/g after a dose of 41 mg/Kg bw day) and its metabolites, proving the permeability of the placenta barrier. Although many studies have been reported on the neurotoxicity of neonicotinoids, our study paves the way for a risk assessment in neurodevelopmental toxicity, demostrating the capability of imidacloprid and its metabolites to pass the biological barriers.


Subject(s)
Insecticides/pharmacokinetics , Mass Spectrometry/methods , Neonicotinoids/pharmacokinetics , Nitro Compounds/pharmacokinetics , Administration, Oral , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Dose-Response Relationship, Drug , Female , Fetus/metabolism , Insecticides/analysis , Male , Mice , Neonicotinoids/administration & dosage , Neonicotinoids/analysis , Nitro Compounds/administration & dosage , Nitro Compounds/analysis , Placenta/metabolism , Pregnancy , Tissue Distribution
5.
J Control Release ; 330: 218-228, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33309836

ABSTRACT

Astrogliosis has a unique reaction during spinal cord damage, with helpful or adverse impacts on recovery. There is consequently a pressing need for treatment to target activated astrocytes and their unsafe response after injury to ensure some preservative effect during the progressive damage. We specifically developed and characterized a functionalized nanogel-based nanovector in vitro and in vivo, demonstrating its selectivity towards astrocytes, and limited uptake by macrophages when functionalized with both NH2 and Cy5 groups. In vitro experiments showed that the internalization was mediated by a clathrin-dependent endocytic pathway. After internalization into the cytoplasm of astrocytes, nanogels undergo lysosomal degradation and release compounds with potential therapeutic efficacy.


Subject(s)
Astrocytes , Spinal Cord Injuries , Humans , Nanogels , Polyethylene Glycols , Polyethyleneimine , Spinal Cord , Spinal Cord Injuries/drug therapy
6.
EBioMedicine ; 62: 103097, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33161233

ABSTRACT

BACKGROUND: CXCL13 is a B and T lymphocyte chemokine that mediates neuroinflammation through its receptor CXCR5. This chemokine is highly expressed by motoneurons (MNs) in Amyotrophic Lateral Sclerosis (ALS) SOD1G93A (mSOD1) mice during the disease, particularly in fast-progressing mice. Accordingly, in this study, we investigated the role of this chemokine in ALS. METHODS: We used in vitro and in vivo experimental paradigms derived from ALS mice and patients to investigate the expression level and distribution of CXCL13/CXCR5 axis and its role in MN death and disease progression. Moreover, we compared the levels of CXCL13 in the CSF and serum of ALS patients and controls. FINDINGS: CXCL13 and CXCR5 are overexpressed in the spinal MNs and peripheral axons in mSOD1 mice. CXCL13 inhibition in the CNS of ALS mice resulted in the exacerbation of motor impairment (n = 4/group;Mean_Diff.=27.81) and decrease survival (n = 14_Treated:19.2 ± 1.05wks, n = 17_Controls:20.2 ± 0.6wks; 95% CI: 0.4687-1.929). This was corroborated by evidence from primary spinal cultures where the inhibition or activation of CXCL13 exacerbated or prevented the MN loss. Besides, we found that CXCL13/CXCR5 axis is overexpressed in the spinal cord MNs of ALS patients, and CXCL13 levels in the CSF discriminate ALS (n = 30) from Multiple Sclerosis (n = 16) patients with a sensitivity of 97.56%. INTERPRETATION: We hypothesise that MNs activate CXCL13 signalling to attenuate CNS inflammation and prevent the neuromuscular denervation. The low levels of CXCL13 in the CSF of ALS patients might reflect the MN dysfunction, suggesting this chemokine as a potential clinical adjunct to discriminate ALS from other neurological diseases. FUNDING: Vaccinex, Inc.; Regione Lombardia (TRANS-ALS).


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Chemokine CXCL13/metabolism , Motor Neurons/metabolism , Receptors, CXCR5/metabolism , Signal Transduction , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/pathology , Animals , Astrocytes/metabolism , Biomarkers , Cells, Cultured , Chemokine CXCL13/genetics , Chemokines/biosynthesis , Disease Models, Animal , Disease Susceptibility , Female , Gene Expression , Gene Expression Profiling , Gene Silencing , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Receptors, CXCR5/genetics , Transduction, Genetic
7.
ACS Nano ; 14(1): 360-371, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31887011

ABSTRACT

Astrogliosis has a very dynamic response during the progression of spinal cord injury, with beneficial or detrimental effects on recovery. It is therefore important to develop strategies to target activated astrocytes and their harmful molecular mechanisms so as to promote a protective environment to counteract the progression of the secondary injury. The challenge is to formulate an effective therapy with maximum protective effects, but reduced side effects. In this study, a functionalized nanogel-based nanovector was selectively internalized in activated mouse or human astrocytes. Rolipram, an anti-inflammatory drug, when administered by these nanovectors limited the inflammatory response in A1 astrocytes, reducing iNOS and Lcn2, which in turn reverses the toxic effect of proinflammatory astrocytes on motor neurons in vitro, showing advantages over conventionally administered anti-inflammatory therapy. When tested acutely in a spinal cord injury mouse model, it improved motor performance, but only in the early stage after injury, reducing the astrocytosis and preserving neuronal cells.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Astrocytes/drug effects , Nanogels/chemistry , Rolipram/therapeutic use , Spinal Cord Injuries/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Particle Size , Rolipram/administration & dosage , Spinal Cord Injuries/pathology , Spinal Cord Injuries/surgery , Surface Properties
8.
Colloids Surf B Biointerfaces ; 185: 110574, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31704605

ABSTRACT

Nanogels represent a pivotal class of biomaterials in the therapeutic intracellular treatment of many diseases, especially those involving the central nervous system (CNS). Their biocompatibility and synergy with the biological environment encourage their cellular uptake, releasing the curative cargo in the desired area. As a main drawback, microglia are generally able to phagocytize any foreign element overcoming the blood brain barrier (BBB), including these materials, drastically limiting their bioavailability for the target cells. In this work, we investigated the opportunity to tune and therefore reduce nanogel internalization in microglia cultures, exploiting the orthogonal chemical functionalization with primary amine groups, as a surface coating strategy. Nanogels are designed by following two methods: the direct grafting of aliphatic primary amines and the linkage of -NH2 modified PEG on the nanogel surface. The latter synthesis was proposed to evaluate the combination of PEGylation with the basic nitrogen atom. The achieved results indicate the possibility of effectively modulating the uptake of nanogels, in particular limiting their internalization using the PEG-NH2 coating. This outcome could be considered a promising strategy for the development of carriers for drugs or gene delivery that could overcome microglia scavenging.


Subject(s)
Amines/pharmacology , Coated Materials, Biocompatible/pharmacology , Endocytosis/drug effects , Microglia/cytology , Nanogels/chemistry , Animals , Cell Survival/drug effects , Dynamic Light Scattering , Fluorescence , Mice, Inbred C57BL , Microglia/drug effects , Models, Molecular , Particle Size , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
9.
J Neuroinflammation ; 16(1): 9, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30651101

ABSTRACT

BACKGROUND: Phagocytosis is a key function of myeloid cells and is highly involved in brain ischemic injury. It has been scarcely studied in vivo, thus preventing a deep knowledge of the processes occurring in the ischemic environment. Structured illumination microscopy (SIM) is a superresolution technique which helps study phagocytosis, a process involving the recruitment of vesicles sized below the resolution limits of standard confocal microscopy. METHODS: Mice underwent permanent occlusion of the middle cerebral artery and were sacrificed at 48 h or 7 days after insult. Immunofluorescence for CD11b, myeloid cell membrane marker, and CD68, lysosomal marker was done in the ischemic area. Images were acquired using a SIM system and verified with SIM check. Lysosomal distribution was measured in the ischemic area by the gray level co-occurrence matrix (GLCM). SIM dataset was compared with transmission electron microscopy images of macrophages in the ischemic tissue at the same time points. Cultured microglia were stimulated with LPS to uptake 100 nm fluorescent beads and imaged by time-lapse SIM. GLCM was used to analyze bead distribution over the cytoplasm. RESULTS: SIM images reached a resolution of 130 nm and passed the quality control diagnose, ruling out possible artifacts. After ischemia, GLCM applied to the CD68 images showed that myeloid cells at 48 h had higher angular second moment (ASM), inverse difference moment (IDM), and lower entropy than myeloid cells at 7 days indicating higher lysosomal clustering at 48 h. At this time point, lysosomal clustering was proximal (< 700 nm) to the cell membrane indicating active target internalization, while at 7 days, it was perinuclear, consistent with final stages of phagocytosis or autophagy. Electron microscopy images indicated a similar pattern of lysosomal distribution thus validating the SIM dataset. GLCM on time-lapse SIM from phagocytic microglia cultures revealed a temporal decrease in ASM and IDM and increase in entropy, as beads were uptaken, indicating that GLCM informs on the progression of phagocytosis. CONCLUSIONS: GLCM analysis on SIM dataset quantitatively described different phases of macrophage phagocytic behavior revealing the dynamics of lysosomal movements in the ischemic brain indicating initial active internalization vs. final digestion/autophagy.


Subject(s)
Brain/diagnostic imaging , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Myeloid Cells/physiology , Optical Imaging/methods , Phagocytosis/physiology , Animals , Animals, Newborn , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , CD11b Antigen/metabolism , Cells, Cultured , Disease Models, Animal , Lipopolysaccharides/pharmacology , Lysosomes/pathology , Lysosomes/ultrastructure , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/ultrastructure , Microscopy, Electron, Transmission , Myeloid Cells/ultrastructure , Spinal Cord/cytology , Time Factors
10.
Mol Neurodegener ; 13(1): 42, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30092791

ABSTRACT

BACKGROUND: The major histocompatibility complex I (MHCI) is a key molecule for the interaction of mononucleated cells with CD8+T lymphocytes. We previously showed that MHCI is upregulated in the spinal cord microglia and motor axons of transgenic SOD1G93A mice. METHODS: To assess the role of MHCI in the disease, we examined transgenic SOD1G93A mice crossbred with ß2 microglobulin-deficient mice, which express little if any MHCI on the cell surface and are defective for CD8+ T cells. RESULTS: The lack of MHCI and CD8+ T cells in the sciatic nerve affects the motor axon stability, anticipating the muscle atrophy and the disease onset. In contrast, MHCI depletion in resident microglia and the lack of CD8+ T cell infiltration in the spinal cord protect the cervical motor neurons delaying the paralysis of forelimbs and prolonging the survival of SOD1G93A mice. CONCLUSIONS: We provided straightforward evidence for a dual role of MHCI in the peripheral nervous system (PNS) compared to the CNS, pointing out regional and temporal differences in the clinical responses of ALS mice. These findings offer a possible explanation for the failure of systemic immunomodulatory treatments and suggest new potential strategies to prevent the progression of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Peripheral Nervous System/immunology , Spinal Cord/immunology , Amyotrophic Lateral Sclerosis/pathology , Animals , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Disease Progression , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peripheral Nervous System/pathology , Spinal Cord/pathology
11.
J Neuroinflammation ; 15(1): 65, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29495962

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS: Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 µl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS: RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION: RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/pathology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Neuroglia/drug effects , Peripheral Nervous System Diseases/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Animals , Calcium-Binding Proteins/metabolism , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Embryo, Mammalian , Glial Fibrillary Acidic Protein/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Motor Disorders/drug therapy , Motor Disorders/etiology , Motor Neurons/drug effects , Neuromuscular Junction/drug effects , Neuromuscular Junction/pathology , Neuronal Outgrowth/drug effects , Peripheral Nervous System Diseases/etiology , Signal Transduction/drug effects , Signal Transduction/genetics , Sodium Chloride/therapeutic use , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
12.
Pharmacol Res ; 103: 180-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26640075

ABSTRACT

Increasing evidence indicates that inflammatory responses could play a critical role in the pathogenesis of motor neuron injury in amyotrophic lateral sclerosis (ALS). Recent findings have underlined the role of Toll-like receptors (TLRs) and the involvement of both the innate and adaptive immune responses in ALS pathogenesis. In particular, abnormal TLR4 signaling in pro-inflammatory microglia cells has been related to motoneuron degeneration leading to ALS. In this study the effect of small molecule TLR4 antagonists on in vitro ALS models has been investigated. Two different types of synthetic glycolipids and the phenol fraction extracted from commercial extra-virgin olive oil (EVOO) were selected since they efficiently inhibit TLR4 stimulus in HEK cells by interacting with the TLR4·MD-2 complex and CD14 co-receptor. Here, TLR4 antagonists efficiently protected motoneurons from LPS-induced lethality in spinal cord cultures, and inhibited the interleukine-1ß production by LPS-stimulated microglia. In motoneurons/glia cocultures obtained from wild type or SOD1 G93A mice, motoneuron death induced by SOD1mut glia was counteracted by TLR4 antagonists. The release of nitric oxide by LPS treatment or SOD1mut glia was also inhibited by EVOO, suggesting that the action of this natural extract could be mainly related to the modulation of this inflammatory mediator.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Neurons/drug effects , Olive Oil/pharmacology , Phenols/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Cell Death/drug effects , Coculture Techniques , Disease Models, Animal , HEK293 Cells , Humans , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Motor Neurons/metabolism , Nitric Oxide/metabolism , Spinal Cord/metabolism , Superoxide Dismutase/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
13.
Biomaterials ; 75: 13-24, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26474039

ABSTRACT

Many efforts have been performed in order to understand the role of recruited macrophages in the progression of spinal cord injury (SCI). Different studies revealed a pleiotropic effect played by these cells associated to distinct phenotypes (M1 and M2), showing a predictable spatial and temporal distribution in the injured site after SCI. Differently, the role of activated microglia in injury progression has been poorly investigated, mainly because of the challenges to target and selectively modulate them in situ. A delivery nanovector tool (poly-ε-caprolactone-based nanoparticles) able to selectively treat/target microglia has been developed and used here to clarify the temporal and spatial involvement of the pro-inflammatory response associated to microglial cells in SCI. We show that a treatment with nanoparticles loaded with minocycline, the latter a well-known anti-inflammatory drug, when administered acutely in a SCI mouse model is able to efficiently modulate the resident microglial cells reducing the pro-inflammatory response, maintaining a pro-regenerative milieu and ameliorating the behavioral outcome up to 63 days post injury. Furthermore, by using this selective delivery tool we demonstrate a mechanistic link between early microglia activation and M1 macrophages recruitment to the injured site via CCL2 chemokine, revealing a detrimental contribution of pro-inflammatory macrophages to injury progression after SCI.


Subject(s)
Inflammation/pathology , Microglia/pathology , Minocycline/therapeutic use , Nanoparticles/chemistry , Spinal Cord Injuries/drug therapy , Animals , Behavior, Animal/drug effects , Cell Movement/drug effects , Chemokine CCL2/metabolism , Disease Models, Animal , Disease Progression , Macrophages/drug effects , Mice, Inbred C57BL , Microglia/drug effects , Models, Biological , Nerve Regeneration/drug effects , Phenotype , Polyesters/chemistry , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
14.
Sci Rep ; 5: 15902, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26510963

ABSTRACT

A new paradigm for the aetiopathology of phenylketonuria suggests the presence of amyloid-like assemblies in the brains of transgenic mouse models and patients with phenylketonuria, possibly shedding light on the selective cognitive deficit associated with this disease. Paralleling the amyloidogenic route that identifies different stages of peptide aggregation, corresponding to different levels of toxicity, we experimentally address for the first time, the physico-chemical properties of phenylalanine aggregates via Small Angle, Wide Angle X-ray Scattering and Atomic Force Microscopy. Results are consistent with the presence of well-structured, aligned fibres generated by milliMolar concentrations of phenylalanine. Moreover, the amyloid-modulating doxycycline agent affects the local structure of phenylalanine aggregates, preventing the formation of well-ordered crystalline structures. Phenylalanine assemblies prove toxic in vitro to immortalized cell lines and primary neuronal cells. Furthermore, these assemblies also cause dendritic sprouting alterations and synaptic protein impairment in neurons. Doxycycline counteracts these toxic effects, suggesting an approach for the development of future innovative non-dietary preventive therapies.


Subject(s)
Amyloid/metabolism , Doxycycline/pharmacology , Neurons/metabolism , Phenylalanine/metabolism , Phenylketonurias , Synapses/metabolism , Animals , Hep G2 Cells , Humans , Mice , Neurons/pathology , Phenylketonurias/drug therapy , Phenylketonurias/metabolism , Phenylketonurias/pathology , Synapses/pathology
15.
Dev Neurobiol ; 75(1): 23-38, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25044829

ABSTRACT

The central nervous system (CNS) is extremely vulnerable to the toxic effects of environmental pollutants during development. Polybrominated diphenyl ethers (PBDEs) are persistent contaminants, increasingly present in the environment and in human tissues. Recent investigations identified a correlation between maternal exposure to PBDEs and impairment in fetal neurobehavioral development, suggesting that these contaminants pose a potential risk for children. We investigated on the potential effects of environmental decabrominated diphenyl ether (decaBDE, the fully brominated congener) on key neurodevelopmental molecules (e.g., synaptic proteins and immature neuron markers) in fetal mouse neurons. Methylmercury was used as reference neurotoxic contaminant and to evaluate its possible synergism with decaBDE. The neurotoxic effects of decaBDE and methylmercury were determined in developing cultured neurons from mouse fetal hippocampus and cerebellum. Neuron death, dendritic branching, synaptic protein expression, markers of immature neurons, and microglia activation were evaluated by immunocytochemistry. Brain samples from prenatally treated embryos were also examined for neurotoxicity signs by immunoblotting and histochemistry. DecaBDE significantly affected (down to 0.4 nM) the number of dendritic branches, and the levels of synaptic proteins and doublecortin in cultured neurons. Prenatal exposure to decaBDE decreased the synaptic proteins and increased the expression of the immature neuron and microglial markers in mouse fetuses. In conclusion, prenatal exposure to realistic (relevant for human exposure) concentrations of decaBDE induces impairment of fetal CNS development in mice, suggesting a potential risk of fetotoxicity in humans.


Subject(s)
Central Nervous System/drug effects , Fetal Development/drug effects , Halogenated Diphenyl Ethers/toxicity , Methylmercury Compounds/toxicity , Neurons/drug effects , Animals , Cells, Cultured/drug effects , Central Nervous System/embryology , Mice
16.
J Control Release ; 174: 15-26, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24225226

ABSTRACT

The possibility to control the fate of the cells responsible for secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.


Subject(s)
Drug Carriers/administration & dosage , Microglia/metabolism , Nanoparticles/administration & dosage , Polymethyl Methacrylate/administration & dosage , Spinal Cord Injuries/metabolism , Animals , Behavior, Animal/drug effects , Carbocyanines/administration & dosage , Carbocyanines/chemistry , Cell Survival/drug effects , Cells, Cultured , Coloring Agents/administration & dosage , Coloring Agents/chemistry , Drug Carriers/chemistry , Female , Hydrogels , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Microglia/drug effects , Nanoparticles/chemistry , Polymethyl Methacrylate/chemistry , Spinal Cord/metabolism
17.
ACS Nano ; 7(11): 9881-95, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24138479

ABSTRACT

Much evidence shows that acute and chronic inflammation in spinal cord injury (SCI), characterized by immune cell infiltration and release of inflammatory mediators, is implicated in development of the secondary injury phase that occurs after spinal cord trauma and in the worsening of damage. Activation of microglia/macrophages and the associated inflammatory response appears to be a self-propelling mechanism that leads to progressive neurodegeneration and development of persisting pain state. Recent advances in polymer science have provided a huge amount of innovations leading to increased interest for polymeric nanoparticles (NPs) as drug delivery tools to treat SCI. In this study, we tested and evaluated in vitro and in vivo a new drug delivery nanocarrier: minocycline loaded in NPs composed by a polymer based on poly-ε-caprolactone and polyethylene glycol. These NPs are able to selectively target and modulate, specifically, the activated proinflammatory microglia/macrophages in subacute progression of the secondary injury in SCI mouse model. After minocycline-NPs treatment, we demonstrate a reduced activation and proliferation of microglia/macrophages around the lesion site and a reduction of cells with round shape phagocytic-like phenotype in favor of a more arborized resting-like phenotype with low CD68 staining. Treatment here proposed limits, up to 15 days tested, the proinflammatory stimulus associated with microglia/macrophage activation. This was demonstrated by reduced expression of proinflammatory cytokine IL-6 and persistent reduced expression of CD68 in traumatized site. The nanocarrier drug delivery tool developed here shows potential advantages over the conventionally administered anti-inflammatory therapy, maximizing therapeutic efficiency and reducing side effects.


Subject(s)
Macrophages/pathology , Microglia/pathology , Minocycline/administration & dosage , Nanomedicine/methods , Spinal Cord Injuries/therapy , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Biocompatible Materials/chemistry , Cell Survival , Coculture Techniques , Disease Models, Animal , Drug Delivery Systems , Enzyme-Linked Immunosorbent Assay , Hydrogels/chemistry , Inflammation , Interleukin-6/blood , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Quantum Dots , Rhodamines/chemistry , Spinal Cord/pathology
18.
Mol Med ; 18: 971-81, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22562723

ABSTRACT

Sustained inflammatory reactions are common pathological events associated with neuron loss in neurodegenerative diseases. Reported evidence suggests that Toll-like receptor 4 (TLR4) is a key player of neuroinflammation in several neurodegenerative diseases. However, the mechanisms by which TLR4 mediates neurotoxic signals remain poorly understood. We investigated the role of TLR4 in in vitro and in vivo settings of motor neuron degeneration. Using primary cultures from mouse spinal cords, we characterized both the proinflammatory and neurotoxic effects of TLR4 activation with lipopolysaccharide (activation of microglial cells, release of proinflammatory cytokines and motor neuron death) and the protective effects of a cyanobacteria-derived TLR4 antagonist (VB3323). With the use of TLR4-deficient cells, a critical role of the microglial component with functionally active TLR4 emerged in this setting. The in vivo experiments were carried out in a mouse model of spontaneous motor neuron degeneration, the wobbler mouse, where we preliminarily confirmed a protective effect of TLR4 antagonism. Compared with vehicle- and riluzole-treated mice, those chronically treated with VB3323 showed a decrease in microglial activation and morphological alterations of spinal cord neurons and a better performance in the paw abnormality and grip-strength tests. Taken together, our data add new understanding of the role of TLR4 in mediating neurotoxicity in the spinal cord and suggest that TLR4 antagonists could be considered in future studies as candidate protective agents for motor neurons in degenerative diseases.


Subject(s)
Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroprotective Agents/metabolism , Spinal Cord/pathology , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Cell Culture Techniques , Cell Shape/drug effects , Cell Survival/drug effects , Disease Models, Animal , Ligands , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Mice, Neurologic Mutants , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Motor Neurons/drug effects , Muscles/drug effects , Muscles/pathology , Neurotoxins/toxicity , Spinal Cord/drug effects , Spinal Cord/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
J Proteomics ; 75(8): 2417-30, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22387315

ABSTRACT

Recent studies showed that food-contaminant non-dioxin-like polychlorinated biphenyls (NDL-PCBs) congeners (PCB52, PCB138, PCB180) have neurotoxic potential, but the cellular and molecular mechanisms underlying neuronal damage are not entirely known. The aim of this study was to assess whether in-vitro exposure to NDL-PCBs may alter the proteome profile of primary cerebellar neurons in order to expand our knowledge on NDL-PCBs neurotoxicity. Comparison of proteome from unexposed and exposed rat cerebellar neurons was performed using state-of-the-art label-free semi-quantitative mass-spectrometry method. We observed significant changes in the abundance of several proteins, that fall into two main classes: (i) novel targets for both PCB138 and 180, mediating the dysregulation of CREB pathways and ubiquitin-proteasome system; (ii) different congeners-specific targets (alpha-actinin-1 for PCB138; microtubule-associated-protein-2 for PCB180) that might lead to similar deleterious consequences on neurons cytoskeleton organization. Interference of the PCB congeners with synaptic formation was supported by the increased expression of pre- and post-synaptic proteins quantified by western blot and immunocytochemistry. Expression alteration of synaptic markers was confirmed in the cerebellum of rats developmentally exposed to these congeners, suggesting an adaptive response to neurodevelopmental toxicity on brain structures. As such, our work is expected to lead to new insights into the mechanisms of NDL-PCBs neurotoxicity.


Subject(s)
Brain/drug effects , Nerve Tissue Proteins/analysis , Polychlorinated Biphenyls/toxicity , Proteome/drug effects , Animals , Animals, Newborn , Brain/metabolism , Brain Chemistry/drug effects , Cells, Cultured , Cerebellum/chemistry , Cerebellum/drug effects , Cerebellum/metabolism , Dioxins/chemistry , Dioxins/toxicity , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Food Contamination , Nerve Tissue Proteins/drug effects , Nerve Tissue Proteins/metabolism , Neurons/chemistry , Neurons/drug effects , Neurons/metabolism , Polychlorinated Biphenyls/chemistry , Proteome/analysis , Proteome/metabolism , Rats , Rats, Wistar
20.
Exp Neurol ; 225(1): 163-72, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20558160

ABSTRACT

In the present study, we investigated whether cultured astrocytes derived from adult neural precursor cells (NPCs) obtained from the subventricular zone (SVZ) of wobbler mice display metabolic traits of the wobbler astrocytes in situ and in primary culture. We also utilized NPC-derived astrocytes as a tool to investigate the involvement of astrocytes in the molecular mechanism of MND focusing on the possible alteration of glutamate reuptake since excitotoxicity glutamate-mediated may be a contributory pathway. NPC-derived wobbler astrocytes are characterized by high immunoreactivity for GFAP, significant decrease of glutamate uptake and reduced immunoreactivity for glutamate transporters GLT1 and GLAST. Spinal cord motor neurons obtained from healthy mouse embryos, when co-cultured with wobbler NPC-derived astrocytes, show reduced viability and morphologic alterations. These suffering motor neurons are caspase-7 positive, and treatment with anti-apoptotic drug V5 increases cell survival. Physical contact with wobbler astrocytes is not essential because purified motor neurons display reduced survival also when treated with the medium conditioned by wobbler NPC-derived astrocytes. Toxic levels of glutamate were revealed by HPLC assay in the extracellular medium of wobbler NPC-derived astrocytes, whereas the level of intracellular glutamate is reduced if compared with controls. Moreover, glutamate receptor antagonists are able to enhance motor neuron survival. Therefore, our results demonstrate that astrocytes derived from wobbler neural precursor cells display impaired glutamate homeostasis that may play a crucial role in motor neuron degeneration. Finally, the cultured astrocytes derived from NPCs of adult mice may offer a useful alternative in vitro model to study the molecular mechanisms involved in neurodegeneration.


Subject(s)
Apoptosis/physiology , Astrocytes/metabolism , Astrocytes/pathology , Glutamic Acid/metabolism , Motor Neurons/pathology , Stem Cells/metabolism , Stem Cells/pathology , Animals , Cell Communication/physiology , Cell Death/physiology , Cells, Cultured , Coculture Techniques , Mice , Mice, Neurologic Mutants , Motor Neurons/metabolism , Nerve Degeneration/metabolism , Nerve Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...