Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Med Chem ; 64(9): 6329-6357, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33929852

ABSTRACT

Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV via binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound 25, which has potent activity against Gram-positive bacteria, a favorable in vitro safety profile, and excellent in vivo pharmacokinetic properties. Compound 25 was found to be efficacious against fluoroquinolone-sensitive Staphylococcus aureus infection in a mouse thigh model at lower doses than moxifloxacin. An X-ray crystal structure of the ternary complex formed by topoisomerase IV from Klebsiella pneumoniae, compound 25, and cleaved DNA indicates that this compound does not engage in a water-metal ion bridge interaction and forms no direct contacts with residues in the quinolone resistance determining region (QRDR). This suggests a structural basis for the reduced impact of QRDR mutations on antibacterial activity of 25 compared to fluoroquinolones.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Drug Design , Fluoroquinolones/pharmacology , Staphylococcus aureus/drug effects , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial/drug effects , Mice , Topoisomerase II Inhibitors/chemistry
2.
J Med Chem ; 63(14): 7773-7816, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32634310

ABSTRACT

Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1H)-ones, exemplified by 34, that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens. X-ray crystallography reveals that 34 occupies the classical quinolone binding site in the topoisomerase IV-DNA cleavage complex but does not form significant contacts with residues in the quinolone resistance determining region.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Fluoroquinolones/pharmacology , Gram-Negative Bacteria/drug effects , Topoisomerase II Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/toxicity , Binding Sites , Cell Line, Tumor , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/chemistry , Fluoroquinolones/chemical synthesis , Fluoroquinolones/metabolism , Fluoroquinolones/toxicity , Gram-Negative Bacteria/enzymology , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/toxicity
3.
J Am Chem Soc ; 142(9): 4445-4455, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32064871

ABSTRACT

The lipopolysaccharide biosynthesis pathway is considered an attractive drug target against the rising threat of multi-drug-resistant Gram-negative bacteria. Here, we report two novel small-molecule inhibitors (compounds 1 and 2) of the acyltransferase LpxA, the first enzyme in the lipopolysaccharide biosynthesis pathway. We show genetically that the antibacterial activities of the compounds against efflux-deficient Escherichia coli are mediated by LpxA inhibition. Consistently, the compounds inhibited the LpxA enzymatic reaction in vitro. Intriguingly, using biochemical, biophysical, and structural characterization, we reveal two distinct mechanisms of LpxA inhibition; compound 1 is a substrate-competitive inhibitor targeting apo LpxA, and compound 2 is an uncompetitive inhibitor targeting the LpxA/product complex. Compound 2 exhibited more favorable biological and physicochemical properties than compound 1 and was optimized using structural information to achieve improved antibacterial activity against wild-type E. coli. These results show that LpxA is a promising antibacterial target and imply the advantages of targeting enzyme/product complexes in drug discovery.


Subject(s)
Acyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Pyrazoles/pharmacology , Acyltransferases/metabolism , Anti-Bacterial Agents/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Escherichia coli/drug effects , Escherichia coli/enzymology , Imidazoles/metabolism , Microbial Sensitivity Tests , Protein Binding , Pyrazoles/metabolism
4.
J Chem Inf Model ; 59(5): 1709-1714, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30943027

ABSTRACT

The success of hit-finding campaigns relies on many factors, including the quality and diversity of the set of compounds that is selected for screening. This paper presents a generalized workflow that guides compound selections from large compound archives with opportunities to bias the selections with available knowledge in order to improve hit quality while still effectively sampling the accessible chemical space. An optional flag in the workflow supports an explicit complement design function where diversity selections complement a given core set of compounds. Results from three project applications as well as a literature case study exemplify the effectiveness of the approach, which is available as a KNIME workflow named Biased Complement Diversity (BCD).


Subject(s)
Drug Discovery/methods , Animals , Anti-Bacterial Agents/pharmacology , Antimalarials/pharmacology , Drug Evaluation, Preclinical/methods , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , High-Throughput Screening Assays/methods , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Protein Interaction Maps/drug effects , Small Molecule Libraries/pharmacology , Workflow
5.
PLoS One ; 13(3): e0193851, 2018.
Article in English | MEDLINE | ID: mdl-29505586

ABSTRACT

Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens.


Subject(s)
Acinetobacter baumannii/metabolism , Fatty Acid Synthesis Inhibitors/metabolism , Fatty Acids/biosynthesis , Lipid A/metabolism , Biological Assay/methods , Cerulenin/pharmacology , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Fatty Acid Synthases/metabolism , Hydroxamic Acids/pharmacology , Threonine/analogs & derivatives , Threonine/pharmacology
6.
Cell Chem Biol ; 24(1): 98-109, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28017602

ABSTRACT

Solving the antibiotic resistance crisis requires the discovery of new antimicrobial drugs and the preservation of existing ones. The discovery of inhibitors of antibiotic resistance, antibiotic adjuvants, is a proven example of the latter. A major difficulty in identifying new antibiotics is the frequent rediscovery of known compounds, necessitating laborious "dereplication" to identify novel chemical entities. We have developed an antibiotic resistance platform (ARP) that can be used for both the identification of antibiotic adjuvants and for antibiotic dereplication. The ARP is a cell-based array of mechanistically distinct individual resistance elements in an identical genetic background. In dereplication mode, we demonstrate the rapid identification, and thus discrimination, of common antibiotics. In adjuvant discovery mode, we show that the ARP can be harnessed in screens to identify inhibitors of resistance. The ARP is therefore a powerful tool that has broad application in confronting the resistance crisis.


Subject(s)
Adjuvants, Pharmaceutic/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Discovery , Drug Resistance, Bacterial/drug effects , Adjuvants, Pharmaceutic/chemistry , Anti-Bacterial Agents/chemistry , High-Throughput Screening Assays , Molecular Structure
7.
Bioorg Med Chem Lett ; 25(17): 3468-75, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26189081

ABSTRACT

We describe the synthesis and evaluation of a library of variably-linked ciprofloxacin dimers. These structures unify and expand on the use of fluoroquinolones as probes throughout the antibiotic literature. A dimeric analog (19) showed enhanced inhibition of its intracellular target (DNA gyrase), and translation to antibacterial activity in whole cells was demonstrated. Overall, cell permeation was governed by physicochemical properties and bacterial type. A principal component analysis demonstrated that the dimers occupy a unique and privileged region of chemical space most similar to the macrolide class of antibiotics.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Infective Agents/chemical synthesis , Ciprofloxacin/chemical synthesis , DNA, Bacterial/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Permeability
8.
Nature ; 510(7506): 503-6, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24965651

ABSTRACT

The emergence and spread of carbapenem-resistant Gram-negative pathogens is a global public health problem. The acquisition of metallo-ß-lactamases (MBLs) such as NDM-1 is a principle contributor to the emergence of carbapenem-resistant Gram-negative pathogens that threatens the use of penicillin, cephalosporin and carbapenem antibiotics to treat infections. To date, a clinical inhibitor of MBLs that could reverse resistance and re-sensitize resistant Gram-negative pathogens to carbapenems has not been found. Here we have identified a fungal natural product, aspergillomarasmine A (AMA), that is a rapid and potent inhibitor of the NDM-1 enzyme and another clinically relevant MBL, VIM-2. AMA also fully restored the activity of meropenem against Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. possessing either VIM or NDM-type alleles. In mice infected with NDM-1-expressing Klebsiella pneumoniae, AMA efficiently restored meropenem activity, demonstrating that a combination of AMA and a carbapenem antibiotic has therapeutic potential to address the clinical challenge of MBL-positive carbapenem-resistant Gram-negative pathogens.


Subject(s)
Aspartic Acid/analogs & derivatives , Carbapenems/pharmacology , Gram-Negative Bacteria/drug effects , Thienamycins/pharmacology , beta-Lactam Resistance/drug effects , beta-Lactamase Inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Aspartic Acid/isolation & purification , Aspartic Acid/pharmacology , Aspergillus/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Drug Evaluation, Preclinical , Drug Synergism , Female , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Meropenem , Mice , beta-Lactamases/genetics , beta-Lactamases/metabolism
9.
Antimicrob Agents Chemother ; 57(7): 3348-57, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23650175

ABSTRACT

The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.


Subject(s)
Anti-Infective Agents , Databases, Genetic , Drug Resistance, Microbial/genetics , Genes, Bacterial , Base Sequence , Computational Biology , Genome, Bacterial , Internet , User-Computer Interface
10.
ACS Chem Biol ; 7(9): 1547-55, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22698393

ABSTRACT

Multi-drug-resistant infections caused by Gram-negative pathogens are rapidly increasing, highlighting the need for new chemotherapies. Unlike Gram-positive bacteria, where many different chemical classes of antibiotics show efficacy, Gram-negatives are intrinsically insensitive to many antimicrobials including the macrolides, rifamycins, and aminocoumarins, despite intracellular targets that are susceptible to these drugs. The basis for this insensitivity is the presence of the impermeant outer membrane of Gram-negative bacteria in addition to the expression of pumps and porins that reduce intracellular concentrations of many molecules. Compounds that sensitize Gram-negative cells to "Gram-positive antibiotics", antibiotic adjuvants, offer an orthogonal approach to addressing the crisis of multi-drug-resistant Gram-negative pathogens. We performed a forward chemical genetic screen of 30,000 small molecules designed to identify such antibiotic adjuvants of the aminocoumarin antibiotic novobiocin in Escherichia coli. Four compounds from this screen were shown to be synergistic with novobiocin including inhibitors of the bacterial cytoskeleton protein MreB, cell wall biosynthesis enzymes, and DNA synthesis. All of these molecules were associated with altered cell shape and small molecule permeability, suggesting a unifying mechanism for these antibiotic adjuvants. The potential exists to expand this approach as a means to develop novel combination therapies for the treatment of infections caused by Gram-negative pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Synergism , Escherichia coli/drug effects , Novobiocin/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/cytology , Escherichia coli Proteins/antagonists & inhibitors , Microbial Sensitivity Tests
11.
Antimicrob Agents Chemother ; 56(2): 757-64, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22083474

ABSTRACT

The lipopeptide daptomycin is a member of the newest FDA-approved antimicrobial class, exhibiting potency against a broad range of Gram-positive pathogens with only rare incidences of clinical resistance. Environmental bacteria harbor an abundance of resistance determinants orthologous to those in pathogens and thus may serve as an early-warning system for future clinical emergence. A collection of morphologically diverse environmental actinomycetes demonstrating unprecedented frequencies of daptomycin resistance and high levels of resistance by antibiotic inactivation was characterized to elucidate modes of drug inactivation. In vivo studies revealed that hydrolysis plays a key role, resulting in one or both of the following structural modifications: ring hydrolysis resulting in linearization (in 44% of inactivating isolates) or deacylation of the lipid tail (29%). Characterization of the mechanism in actinomycete WAC4713 (a Streptomyces sp. with an MIC of 512 µg/ml) demonstrated a constitutive resistance phenotype and established daptomycin's circularizing ester linkage to be the site of hydrolysis. Characterization of the hydrolase responsible revealed it to be likely a serine protease. These studies suggested that daptomycin is susceptible to general proteolytic hydrolysis, which was further supported by studies using proteases of diverse origin. These findings represent the first comprehensive characterization of daptomycin inactivation in any bacterial class and may not only presage a future mechanism of clinical resistance but also suggest strategies for the development of new lipopeptides.


Subject(s)
Anti-Bacterial Agents/metabolism , Daptomycin/metabolism , Drug Resistance, Bacterial , Serine Proteases/metabolism , Streptomyces/enzymology , Actinobacteria/classification , Actinobacteria/drug effects , Actinobacteria/enzymology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Daptomycin/chemistry , Daptomycin/pharmacology , Hydrolysis , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Soil Microbiology , Streptomyces/drug effects , Streptomyces/growth & development
12.
Mol Syst Biol ; 7: 499, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21694716

ABSTRACT

Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off-patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species- or genus-specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole-resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Cryptococcus/drug effects , Fluconazole/pharmacology , Saccharomyces/drug effects , Animals , Candida/growth & development , Computational Biology , Cryptococcus/growth & development , Drug Resistance, Fungal/genetics , Drug Synergism , Ergosterol/antagonists & inhibitors , Ergosterol/biosynthesis , Gene Expression Profiling/methods , Insecta/drug effects , Microbial Sensitivity Tests , Saccharomyces/genetics , Saccharomyces/growth & development , Species Specificity
14.
J Antibiot (Tokyo) ; 64(7): 483-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21522158

ABSTRACT

Homoserine transacetylase (HTA) catalyzes the transfer of an acetyl group from acetyl-CoA to the hydroxyl group of homoserine. This is the first committed step in the biosynthesis of methionine (Met) from aspartic acid in many fungi, Gram-positive and some Gram-negative bacteria. The enzyme is absent in higher eukaryotes and is important for microorganism growth in Met-poor environments, such as blood serum, making HTA an attractive target for new antimicrobial agents. HTA catalyzes acetyl transfer via a double displacement mechanism facilitated by a classic Ser-His-Asp catalytic triad located at the bottom of a narrow actives site tunnel. We explored the inhibitory activity of several ß-lactones to block the activity of HTA. In particular, the natural product ebelactone A, a ß-lactone with a hydrophobic tail was found to be a potent inactivator of HTA from Haemophilus influenzae. Synthetic analogs of ebelactone A demonstrated improved inactivation characteristics. Covalent modification of HTA was confirmed by mass spectrometry, and peptide mapping identified Ser143 as the modified residue, consistent with the known structure and mechanism of the enzyme. These results demonstrate that ß-lactone inhibitors are excellent biochemical probes of HTA and potential leads for new antimicrobial agents.


Subject(s)
Acetyltransferases/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Haemophilus influenzae/drug effects , Acetyltransferases/metabolism , Anti-Infective Agents/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Haemophilus influenzae/enzymology , Lactones/chemistry , Lactones/pharmacology , Mass Spectrometry , Peptide Mapping
16.
Bioorg Med Chem ; 17(9): 3443-55, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19356937

ABSTRACT

Ligase MurM catalyses the addition of Ala from alanyl-tRNA(Ala), or Ser from seryl-tRNA(Ser), to lipid intermediate II in peptidoglycan biosynthesis in Streptococcus pneumoniae, and is a determinant of high-level penicillin resistance. Phosphorus-based transition state analogues were designed as inhibitors of the MurM-catalysed reaction. Phosphonamide analogues mimicking the attack of a lysine nucleophile upon Ala-tRNA(Ala) showed no inhibition of MurM, but adenosine 3'-phosphonate analogues showed inhibition of MurM, the most active being a 2'-deoxyadenosine analogue (IC(50) 100 microM). Structure/function studies upon this analogue established that modification of the amino group of the aminoalkylphosphonate resulted in loss of potency, and modification of the adenosine 5'-hydroxyl group with either a t-butyl dimethyl silyl or a carbamate functional group resulted in loss of activity. A library of 48 aryl sulfonamides was also screened against MurM using a radiochemical assay, and two compounds showed sub-millimolar inhibition. These compounds are the first small molecule inhibitors of the Fem ligase family of peptidyltransferases found in Gram-positive bacteria.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Organophosphonates/pharmacology , Peptide Synthases/antagonists & inhibitors , Streptococcus pneumoniae/enzymology , Sulfonamides/pharmacology , Adenine Nucleotides/chemistry , Catalysis , Humans , Models, Molecular , Organophosphonates/chemistry , RNA Ligase (ATP)/genetics , Streptococcus pneumoniae/drug effects , Structure-Activity Relationship , Sulfonamides/chemistry
17.
J Comb Chem ; 11(1): 155-68, 2009.
Article in English | MEDLINE | ID: mdl-19072614

ABSTRACT

alpha-exo-Methylene-gamma-lactones and alpha-exo-methylene-gamma-lactams are key structural units in a wide variety of natural products. These substances exhibit a high degree of bioactivity against numerous biological targets that play important roles in several diseases. A library of functionalized gamma-lactones and gamma-lactams containing both unsaturated and saturated side chains at the alpha position of the ring was synthesized. The generation of this library first involves sequential allylation of aldehydes or imines with 2-alkoxycarbonyl allylboronates, followed by ring closure to give alpha-exo-methylene-gamma-lactones or alpha-exo-methylene-gamma-lactams, which are subjected to various transition metal catalyzed coupling reactions to introduce additional diversity. A subset of the library was screened for inhibition of homoserine transacetylase (HTA) from Haemophilus influenzae and showed promising initial activity profiles.


Subject(s)
Antiviral Agents/chemical synthesis , Lactams/chemical synthesis , Lactones/chemical synthesis , Acetyltransferases/antagonists & inhibitors , Aldehydes/chemistry , Boronic Acids , Drug Evaluation, Preclinical , Haemophilus influenzae/enzymology , Imines/chemistry , Lactams/pharmacology , Lactones/pharmacology
18.
J Biol Chem ; 283(50): 34571-9, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18842590

ABSTRACT

MurM and MurN are tRNA-dependent ligases that catalyze the addition of the first (L-Ala/L-Ser) and second (L-Ala) amino acid onto lipid II substrates in the biosynthesis of the peptidoglycan layer of Streptococcus pneumoniae. We have previously characterized the first ligase, MurM (Lloyd, A. J., Gilbey, A. M., Blewett, A. M., De Pascale, G., El Zoeiby, A., Levesque, R. C., Catherwood, A. C., Tomasz, A., Bugg, T. D., Roper, D. I., and Dowson, C. G. (2008) J. Biol. Chem. 283, 6402-6417). In order to characterize the second ligase MurN, we have developed a chemoenzymatic route to prepare the lipid II-Ala and lipid II-Ser substrates. Recombinant MurN enzymes from penicillin-resistant (159) and -sensitive (Pn16) S. pneumoniae were expressed and purified as MBP fusion proteins and reconstituted using a radiochemical assay. MurN ligases from strains 159 and Pn16 both showed a 20-fold higher catalytic efficiency for lipid II-L-Ala over lipid II-l-Ser, with no activity against unmodified lipid II, and similar kinetic parameters were measured for MurN from penicillin-resistant and penicillin-sensitive strains. These results concur with the peptidoglycan analysis of S. pneumoniae, in which the major cross-link observed is L-Ala-L-Ala. The combined action of ligases MurM and MurN is therefore required in order to rationalize the high level of dipeptide cross-links in penicillin-resistant S. pneumoniae, with ligase MurM showing the major difference between penicillin-resistant and penicillin-sensitive strains.


Subject(s)
Bacterial Proteins/chemistry , Lipids/chemistry , Peptide Synthases/chemistry , Streptococcus pneumoniae/enzymology , Alanine/chemistry , Bacterial Proteins/metabolism , Biochemistry/methods , Catalysis , Cross-Linking Reagents/chemistry , Drug Resistance, Microbial , Kinetics , Mass Spectrometry/methods , Models, Chemical , Penicillins/chemistry , Peptide Synthases/metabolism , Recombinant Proteins/chemistry , Serine/chemistry
19.
FEMS Microbiol Lett ; 281(2): 210-4, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18312360

ABSTRACT

We have developed a novel type of a positive screen for the discovery of antibacterial compounds that target the Escherichia coli replication initiator protein DnaA. DnaA is an essential replication protein, conserved in (almost) all bacteria--including all human pathogens--and no existing antibiotics target the main components of the DNA replication machinery. This makes DnaA an attractive target and compounds discovered by this screen will constitute a new group of antibiotics. The conditional mutant, dnaA219, has a cold sensitive phenotype due to overreplication. In the screen, a DnaA inhibitor will reduce DnaA overactivity and thus restore growth at the nonpermissive temperature. This positive type of selection utilizes the rare phenomenon of lethal overactivity. In addition, the mutant strain has been made independent of DnaA activity by introduction of an alternative initiation pathway that allows growth under conditions of complete knockdown of DnaA. The resulting dnaA219rnhA strain is the basis of a robust, cell-based assay amenable to high-throughput screening. The screening assay has been validated against (1) a library of microbial fermentation extracts and (2) a known intracellular DnaA inhibitor.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/antagonists & inhibitors , DNA Replication/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Gene Silencing/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Evaluation, Preclinical , Escherichia coli/genetics , Escherichia coli/growth & development , Temperature
20.
J Biol Chem ; 283(10): 6402-17, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18077448

ABSTRACT

MurM is an aminoacyl ligase that adds l-serine or l-alanine as the first amino acid of a dipeptide branch to the stem peptide lysine of the pneumococcal peptidoglycan. MurM activity is essential for clinical pneumococcal penicillin resistance. Analysis of peptidoglycan from the highly penicillin-resistant Streptococcus pneumoniae strain 159 revealed that in vivo and in vitro, in the presence of the appropriate acyl-tRNA, MurM(159) alanylated the peptidoglycan epsilon-amino group of the stem peptide lysine in preference to its serylation. However, in contrast, identical analyses of the penicillin-susceptible strain Pn16 revealed that MurM(Pn16) activity supported serylation more than alanylation both in vivo and in vitro. Interestingly, both MurM(Pn16) acylation activities were far lower than the alanylation activity of MurM(159). The resulting differing stem peptide structures of 159 and Pn16 were caused by the profoundly greater catalytic efficiency of MurM(159) compared with MurM(Pn16) bought about by sequence variation between these enzymes and, to a lesser extent, differences in the in vivo tRNA(Ala):tRNA(Ser) ratio in 159 and Pn16. Kinetic analysis revealed that MurM(159) acted during the lipid-linked stages of peptidoglycan synthesis, that the d-alanyl-d-alanine of the stem peptide and the lipid II N-acetylglucosaminyl group were not essential for substrate recognition, that epsilon-carboxylation of the lysine of the stem peptide was not tolerated, and that lipid II-alanine was a substrate, suggesting an evolutionary link to staphylococcal homologues of MurM such as FemA. Kinetic analysis also revealed that MurM recognized the acceptor stem and/or the TPsiC loop stem of the tRNA(Ala). It is anticipated that definition of the minimal structural features of MurM substrates will allow development of novel resistance inhibitors that will restore the efficacy of beta-lactams for treatment of pneumococcal infection.


Subject(s)
Bacterial Proteins/metabolism , Peptide Synthases/metabolism , Peptidoglycan/biosynthesis , Protein Processing, Post-Translational/physiology , RNA, Transfer, Amino Acyl/metabolism , Streptococcus pneumoniae/enzymology , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Dipeptides/biosynthesis , Dipeptides/chemistry , Dipeptides/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Kinetics , Penicillins/chemistry , Penicillins/pharmacology , Peptide Synthases/chemistry , Peptide Synthases/genetics , Peptidoglycan/chemistry , Peptidoglycan/genetics , Pneumococcal Infections/drug therapy , Pneumococcal Infections/enzymology , Pneumococcal Infections/genetics , Protein Processing, Post-Translational/drug effects , Protein Structure, Secondary/genetics , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/genetics , Sequence Homology, Amino Acid , Streptococcus pneumoniae/genetics , Substrate Specificity/genetics , Uridine Diphosphate N-Acetylmuramic Acid/genetics , Uridine Diphosphate N-Acetylmuramic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...