Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 17130, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748638

ABSTRACT

This study reports on the fabrication and characterization of an event detection subsystem composed of a flexible piezoelectric pressure sensor and the electronic interface to be integrated into an implantable artificial pancreas (IAP) for diabetic patients. The developed sensor is made of an AlN layer, sandwiched between two Ti electrodes, sputtered on Kapton substrate, with a preferential orientation along c-axis which guarantees the best piezoelectric response. The IAP is made of an intestinal wall-interfaced refilling module, able to dock an ingestible insulin capsule. A linearly actuated needle punches the duodenum tissue and then the PDMS capsule to transfer the insulin to an implanted reservoir. The device is located at the connection of the needle with the linear actuator to reliably detect the occurred punching of the insulin-filled capsule. Finite Element Analysis (FEA) simulations were performed to evaluate the piezoelectric charge generated for increasing loads in the range of interest, applied on both the sensor full-area and footprint area of the Hamilton needle used for the capsule punching. The sensor-interface circuit was simulated to estimate the output voltage that can be obtained in real operating conditions. The characterization results confirmed a high device sensitivity during the punching, in the low forces (0-4 N) and low actuator speed (2-3 mm/s) ranges of interest, meeting the requirement of the research objective. The choice of a piezoelectric pressure sensor is particularly strategic in the medical field due to the request of self-powered implantable devices which do not need any external power source to output a signal and harvest energy from natural sources around the patient.


Subject(s)
Electronics/instrumentation , Pancreas, Artificial , Electric Power Supplies , Electrodes , Humans , Needles , Prostheses and Implants
2.
Nanotechnology ; 23(9): 095302, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22327322

ABSTRACT

The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO(2) polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO(2) polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO(2) thin film and the TiO(2) nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10(-4)) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor R(g), a parallel R(gb)C(gb) block and a parallel R(c)-CPE(c) combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in parallel connection with the whole circuit block. Such a circuit element (an ideal inductor, L) has an average value of about 125 µH and exhibits no direct dependence on the analyte gas concentration. Its presence could be due to complex mutual inductance effects occurring both between all the adjacent nanostrips (10 µm spaced) and between the nanostrips and the n-type-doped silicon substrate underneath the thermal oxide (wire/plate effect), where a two order of magnitude higher magnetic permeability of silicon can give L values comparable with those estimated by the fitting procedure. Slightly modified experimental models confirmed that the theoretical background, regulating thin film devices based on metal oxide semiconductors, is also valid for nanopatterned devices.


Subject(s)
Conductometry/instrumentation , Gases/analysis , Nanostructures/chemistry , Nanostructures/ultrastructure , Titanium/chemistry , Crystallization/methods , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Materials Testing , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...