Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 200(1): 79-86, 2023 01.
Article in English | MEDLINE | ID: mdl-36168923

ABSTRACT

Severe congenital neutropenia (SCN) patients are prone to develop myelodysplastic syndrome (MDS) or acute myeloid leukaemia (AML). Leukaemic progression of SCN is associated with the early acquisition of CSF3R mutations in haematopoietic progenitor cells (HPCs), which truncate the colony-stimulating factor 3 receptor (CSF3R). These mutant clones may arise years before MDS/AML becomes overt. Introduction and activation of CSF3R truncation mutants in normal HPCs causes a clonally dominant myeloproliferative state in mice treated with CSF3. Paradoxically, in SCN patients receiving CSF3 therapy, clonal dominance of CSF3R mutant clones usually occurs only after the acquisition of additional mutations shortly before frank MDS or AML is diagnosed. To seek an explanation for this discrepancy, we introduced a patient-derived CSF3R-truncating mutation in ELANE-SCN and HAX1-SCN derived and control induced pluripotent stem cells and compared the CSF3 responses of HPCs generated from these lines. In contrast to CSF3R-mutant control HPCs, CSF3R-mutant HPCs from SCN patients do not show increased proliferation but display elevated levels of inflammatory signalling. Thus, activation of the truncated CSF3R in SCN-HPCs does not evoke clonal outgrowth but causes a sustained pro-inflammatory state, which has ramifications for how these CSF3R mutants contribute to the leukaemic transformation of SCN.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Mice , Animals , Congenital Bone Marrow Failure Syndromes/genetics , Leukemia, Myeloid, Acute/diagnosis , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/complications
2.
Blood Adv ; 5(3): 775-786, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33560392

ABSTRACT

Mutations in ELANE cause severe congenital neutropenia (SCN), but how they affect neutrophil production and contribute to leukemia predisposition is unknown. Neutropenia is alleviated by CSF3 (granulocyte colony-stimulating factor) therapy in most cases, but dose requirements vary between patients. Here, we show that CD34+CD45+ hematopoietic progenitor cells (HPCs) derived from induced pluripotent stem cell lines from patients with SCN that have mutations in ELANE (n = 2) or HAX1 (n = 1) display elevated levels of reactive oxygen species (ROS) relative to normal iPSC-derived HPCs. In patients with ELANE mutations causing misfolding of the neutrophil elastase (NE) protein, HPCs contained elevated numbers of promyelocyte leukemia protein nuclear bodies, a hallmark of acute oxidative stress. This was confirmed in primary bone marrow cells from 3 additional patients with ELANE-mutant SCN. Apart from responding to elevated ROS levels, PML controlled the metabolic state of these ELANE-mutant HPCs as well as the expression of ELANE, suggestive of a feed-forward mechanism of disease development. Both PML deletion and correction of the ELANE mutation restored CSF3 responses of these ELANE-mutant HPCs. These findings suggest that PML plays a crucial role in the disease course of ELANE-SCN characterized by NE misfolding, with potential implications for CSF3 therapy.


Subject(s)
Leukocyte Elastase/genetics , Neutropenia , Adaptor Proteins, Signal Transducing , Congenital Bone Marrow Failure Syndromes , Granulocyte Colony-Stimulating Factor , Humans , Mutation , Neutropenia/congenital , Neutropenia/genetics
3.
Cell Rep Med ; 1(5): 100074, 2020 08 25.
Article in English | MEDLINE | ID: mdl-33205068

ABSTRACT

Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated in mouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity is a critical step in the malignant transformation of SCN.


Subject(s)
Cell Transformation, Neoplastic/genetics , Congenital Bone Marrow Failure Syndromes/genetics , Congenital Bone Marrow Failure Syndromes/pathology , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/genetics , Neutropenia/congenital , Transcription Factors/genetics , Animals , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Core Binding Factor Alpha 2 Subunit/genetics , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/pathology , K562 Cells , Mice , Neutropenia/genetics , Neutropenia/pathology , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...