Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Neurosci ; 47(6): 447-460, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749825

ABSTRACT

The descending-pain modulating circuit controls the experience of pain by modulating transmission of sensory signals through the dorsal horn. This circuit's key output node, the rostral ventromedial medulla (RVM), integrates 'top-down' and 'bottom-up' inputs that regulate functionally defined RVM cell types, 'OFF-cells' and 'ON-cells', which respectively suppress or facilitate pain-related sensory processing. While recent advances have sought molecular definition of RVM cell types, conflicting behavioral findings highlight challenges involved in aligning functional and molecularly defined types. This review summarizes current understanding, derived primarily from rodent studies but with corroborating evidence from human imaging, of the role of RVM populations in pain modulation and persistent pain states and explores recent advances outlining inputs to, and outputs from, RVM pain-modulating neurons.


Subject(s)
Medulla Oblongata , Pain , Medulla Oblongata/physiology , Medulla Oblongata/physiopathology , Animals , Humans , Pain/physiopathology , Neurons/physiology , Neural Pathways/physiopathology , Neural Pathways/physiology
2.
J Neurosci ; 43(32): 5779-5791, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37487738

ABSTRACT

The brain is able to amplify or suppress nociceptive signals by means of descending projections to the spinal and trigeminal dorsal horns from the rostral ventromedial medulla (RVM). Two physiologically defined cell classes within RVM, "ON-cells" and "OFF-cells," respectively facilitate and inhibit nociceptive transmission. However, sensory pathways through which nociceptive input drives changes in RVM cell activity are only now being defined. We recently showed that indirect inputs from the dorsal horn via the parabrachial complex (PB) convey nociceptive information to RVM. The purpose of the present study was to determine whether there are also direct dorsal horn inputs to RVM pain-modulating neurons. We focused on the trigeminal dorsal horn, which conveys sensory input from the face and head, and used a combination of single-cell recording with optogenetic activation and inhibition of projections to RVM and PB from the trigeminal interpolaris-caudalis transition zone (Vi/Vc) in male and female rats. We determined that a direct projection from ventral Vi/Vc to RVM carries nociceptive information to RVM pain-modulating neurons. This projection included a GABAergic component, which could contribute to nociceptive inhibition of OFF-cells. This approach also revealed a parallel, indirect, relay of trigeminal information to RVM via PB. Activation of the indirect pathway through PB produced a more sustained response in RVM compared with activation of the direct projection from Vi/Vc. These data demonstrate that a direct trigeminal output conveys nociceptive information to RVM pain-modulating neurons with a parallel indirect pathway through the parabrachial complex.SIGNIFICANCE STATEMENT Rostral ventromedial medulla (RVM) pain-modulating neurons respond to noxious stimulation, which implies that they receive input from pain-transmission circuits. However, the traditional view has been that there is no direct input to RVM pain-modulating neurons from the dorsal horn, and that nociceptive information is carried by indirect pathways. Indeed, we recently showed that noxious information can reach RVM pain-modulating neurons via the parabrachial complex (PB). Using in vivo electrophysiology and optogenetics, the present study identified a direct relay of nociceptive information from the trigeminal dorsal horn to physiologically identified pain-modulating neurons in RVM. Combined tracing and electrophysiology data revealed that the direct projection includes GABAergic neurons. Direct and indirect pathways may play distinct functional roles in recruiting pain-modulating neurons.


Subject(s)
Nociception , Pain , Female , Rats , Male , Animals , Nociception/physiology , Rats, Sprague-Dawley , Medulla Oblongata/physiology , Neurons/physiology , Spinal Cord Dorsal Horn
3.
Nat Neurosci ; 26(4): 594-605, 2023 04.
Article in English | MEDLINE | ID: mdl-36894654

ABSTRACT

Supraspinal brain regions modify nociceptive signals in response to various stressors including stimuli that elevate pain thresholds. The medulla oblongata has previously been implicated in this type of pain control, but the neurons and molecular circuits involved have remained elusive. Here we identify catecholaminergic neurons in the caudal ventrolateral medulla that are activated by noxious stimuli in mice. Upon activation, these neurons produce bilateral feed-forward inhibition that attenuates nociceptive responses through a pathway involving the locus coeruleus and norepinephrine in the spinal cord. This pathway is sufficient to attenuate injury-induced heat allodynia and is required for counter-stimulus induced analgesia to noxious heat. Our findings define a component of the pain modulatory system that regulates nociceptive responses.


Subject(s)
Nociceptors , Pain , Mice , Animals , Nociceptors/physiology , Pain/metabolism , Medulla Oblongata/metabolism , Pain Management , Neurons/physiology , Spinal Cord/physiology
4.
Neurobiol Pain ; 10: 100075, 2021.
Article in English | MEDLINE | ID: mdl-34660937

ABSTRACT

Functional pain disorders disproportionately impact females, but most pain research in animals has been conducted in males. While there are anatomical and pharmacological sexual dimorphisms in brainstem pain-modulation circuits, the physiology of pain-modulating neurons that comprise a major functional output, the rostral ventromedial medulla (RVM), has not been explored in female animals. The goal of this study was to identify and characterize the activity of RVM cells in female, compared to male, rats. ON- and OFF-cells were identified within the RVM in females, with firing properties comparable to those described in males. In addition, both ON- and OFF-cells exhibited a sensitized response to somatic stimuli in females subjected to persistent inflammation, and both ON- and OFF-cells responded to systemically administered morphine at a dose sufficient to produce behavioral antinociception. These data demonstrate that the ON-/OFF-cell framework originally defined in males is also present in females, and that as in males, these neurons are recruited in females in persistent inflammation and by systemically administered morphine. Importantly, this work establishes a foundation for the use of female animals in studies of RVM and descending control.

SELECTION OF CITATIONS
SEARCH DETAIL
...