Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 130(1): 507-522, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31714901

ABSTRACT

X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease are caused by deficiency of the magnesium transporter 1 (MAGT1) gene. We studied 23 patients with XMEN, 8 of whom were EBV naive. We observed lymphadenopathy (LAD), cytopenias, liver disease, cavum septum pellucidum (CSP), and increased CD4-CD8-B220-TCRαß+ T cells (αßDNTs), in addition to the previously described features of an inverted CD4/CD8 ratio, CD4+ T lymphocytopenia, increased B cells, dysgammaglobulinemia, and decreased expression of the natural killer group 2, member D (NKG2D) receptor. EBV-associated B cell malignancies occurred frequently in EBV-infected patients. We studied patients with XMEN and patients with autoimmune lymphoproliferative syndrome (ALPS) by deep immunophenotyping (32 immune markers) using time-of-flight mass cytometry (CyTOF). Our analysis revealed that the abundance of 2 populations of naive B cells (CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4++CD10+CD38+ and CD20+CD27-CD22+IgM+HLA-DR+CXCR5+CXCR4+CD10-CD38-) could differentially classify XMEN, ALPS, and healthy individuals. We also performed glycoproteomics analysis on T lymphocytes and show that XMEN disease is a congenital disorder of glycosylation that affects a restricted subset of glycoproteins. Transfection of MAGT1 mRNA enabled us to rescue proteins with defective glycosylation. Together, these data provide new clinical and pathophysiological foundations with important ramifications for the diagnosis and treatment of XMEN disease.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/immunology , Magnesium Deficiency/immunology , X-Linked Combined Immunodeficiency Diseases/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Autoimmune Lymphoproliferative Syndrome/genetics , Autoimmune Lymphoproliferative Syndrome/pathology , CD4-CD8 Ratio , Cation Transport Proteins/genetics , Cation Transport Proteins/immunology , Female , Glycosylation , Humans , Magnesium Deficiency/genetics , Magnesium Deficiency/pathology , Male , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/pathology
2.
Nat Med ; 22(2): 146-53, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26779811

ABSTRACT

Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.


Subject(s)
DNA, Mitochondrial/metabolism , Extracellular Traps/immunology , Granulomatous Disease, Chronic/immunology , Lupus Erythematosus, Systemic/immunology , Mitochondria/metabolism , Neutrophils/immunology , Adult , Animals , Antigen-Antibody Complex , Extracellular Traps/metabolism , Female , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , Humans , Immunoprecipitation , In Vitro Techniques , Interferon Type I/immunology , Jurkat Cells , Kidney/immunology , Kidney/metabolism , Lupus Erythematosus, Systemic/metabolism , Male , Mice , Microscopy, Fluorescence , NADPH Oxidases/genetics , Oxidation-Reduction , Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Ribonucleoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...