Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 180: 106083, 2023 05.
Article in English | MEDLINE | ID: mdl-36931532

ABSTRACT

Rett syndrome (RTT) is a X-linked neurodevelopmental disorder which represents the leading cause of severe incurable intellectual disability in females worldwide. The vast majority of RTT cases are caused by mutations in the X-linked MECP2 gene, and preclinical studies on RTT largely benefit from the use of mouse models of Mecp2, which present a broad spectrum of symptoms phenocopying those manifested by RTT patients. Neurons represent the core targets of the pathology; however, neuroanatomical abnormalities that regionally characterize the Mecp2 deficient mammalian brain remain ill-defined. Neuroimaging techniques, such as MRI and MRS, represent a key approach for assessing in vivo anatomic and metabolic changes in brain. Being non-invasive, these analyses also permit to investigate how the disease progresses over time through longitudinal studies. To foster the biological comprehension of RTT and identify useful biomarkers, we have performed a thorough in vivo longitudinal study of MRI and MRS in Mecp2 deficient mouse brains. Analyses were performed on both genders of two different mouse models of RTT, using an automatic atlas-based segmentation tool that permitted to obtain a detailed and unbiased description of the whole RTT mouse brain. We found that the most robust alteration of the RTT brain consists in an overall reduction of the brain volume. Accordingly, Mecp2 deficiency generally delays brain growth, eventually leading, in heterozygous older animals, to stagnation and/or contraction. Most but not all brain regions participate in the observed deficiency in brain size; similarly, the volumetric defect progresses diversely in different brain areas also depending on the specific Mecp2 genetic lesion and gender. Interestingly, in some regions volumetric defects anticipate overt symptoms, possibly revealing where the pathology originates and providing a useful biomarker for assessing drug efficacy in pre-clinical studies.


Subject(s)
Methyl-CpG-Binding Protein 2 , Rett Syndrome , Female , Mice , Male , Animals , Longitudinal Studies , Methyl-CpG-Binding Protein 2/metabolism , Rett Syndrome/diagnostic imaging , Rett Syndrome/genetics , Rett Syndrome/metabolism , Brain/metabolism , Mutation , Magnetic Resonance Imaging , Mammals/metabolism
2.
EMBO Mol Med ; 13(4): e12433, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33665914

ABSTRACT

MECP2 mutations cause Rett syndrome (RTT), a severe and progressive neurodevelopmental disorder mainly affecting females. Although RTT patients exhibit delayed onset of symptoms, several evidences demonstrate that MeCP2 deficiency alters early development of the brain. Indeed, during early maturation, Mecp2 null cortical neurons display widespread transcriptional changes, reduced activity, and defective morphology. It has been proposed that during brain development these elements are linked in a feed-forward cycle where neuronal activity drives transcriptional and morphological changes that further increase network maturity. We hypothesized that the enhancement of neuronal activity during early maturation might prevent the onset of RTT-typical molecular and cellular phenotypes. Accordingly, we show that the enhancement of excitability, obtained by adding to neuronal cultures Ampakine CX546, rescues transcription of several genes, neuronal morphology, and responsiveness to stimuli. Greater effects are achieved in response to earlier treatments. In vivo, short and early administration of CX546 to Mecp2 null mice prolongs lifespan, delays the disease progression, and rescues motor abilities and spatial memory, thus confirming the value for RTT of an early restoration of neuronal activity.


Subject(s)
Methyl-CpG-Binding Protein 2 , Rett Syndrome , Animals , Brain/metabolism , Female , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Neurons/metabolism , Phenotype , Rett Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...