Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 108(3): 797-810, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36226498

ABSTRACT

BCL-2 family proteins are frequently aberrantly expressed in mantle cell lymphoma (MCL). Recently, the BCL-2-specific inhibitor venetoclax has been approved by the US Food and Drug Administration for chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). In MCL, venetoclax has shown promising efficacy in early clinical trials; however, a significant subset of patients is resistant. By conducting a kinome-centered CRISPR-Cas9 knockout sensitizer screen, we identified casein kinase 2 (CK2) as a major regulator of venetoclax resistance in MCL. Interestingly, CK2 is over-expressed in MCL and high CK2 expression is associated with poor patient survival. Targeting of CK2, either by inducible short hairpin RNA (shRNA)-mediated knockdown of CK2 or by the CK2-inhibitor silmitasertib, did not affect cell viability by itself, but strongly synergized with venetoclax in both MCL cell lines and primary samples, also if combined with ibrutinib. Furthermore, targeting of CK2 reduced MCL-1 levels, which involved impaired MCL-1 translation by inhibition of eIF4F complex assembly, without affecting BCL-2 and BCL-XL expression. Combined, this results in enhanced BCL-2 dependence and, consequently, venetoclax sensitization. In cocultures, targeting of CK2 overcame stroma-mediated venetoclax resistance of MCL cells. Taken together, our findings indicate that targeting of CK2 sensitizes MCL cells to venetoclax through downregulation of MCL-1. These novel insights provide a strong rationale for combining venetoclax with CK2 inhibition as therapeutic strategy for MCL patients.


Subject(s)
Antineoplastic Agents , Lymphoma, Mantle-Cell , Humans , Adult , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Casein Kinase II/genetics , Casein Kinase II/metabolism , Down-Regulation , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2 , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
2.
Bio Protoc ; 12(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36505024

ABSTRACT

Mature B-cell lymphomas are highly dependent upon the protective lymphoid organ microenvironment for their growth and survival. Targeting integrin-mediated homing and retention of the malignant B cells in the lymphoid organs, using the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, is a highly efficacious FDA-approved therapy for chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström macroglobulinemia (WM). Unfortunately, a significant subset of patients is intrinsically resistant to ibrutinib or will develop resistance upon prolonged treatment. Here, we describe an unbiased functional genomic CRISPR-Cas9 screening method to identify novel proteins involved in B-cell receptor-controlled integrin-mediated adhesion, which provides novel therapeutic targets to overcome ibrutinib resistance. This screening method is highly flexible and can be easily adapted to identify cell adhesion-regulatory proteins and signaling pathways for other stimuli, adhesion molecules, and cell types. Graphical abstract.

3.
Nat Commun ; 13(1): 2136, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440579

ABSTRACT

The clinical introduction of the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which targets B-cell antigen-receptor (BCR)-controlled integrin-mediated retention of malignant B cells in their growth-supportive lymphoid organ microenvironment, provided a major breakthrough in lymphoma and leukemia treatment. Unfortunately, a significant subset of patients is intrinsically resistant or acquires resistance against ibrutinib. Here, to discover novel therapeutic targets, we present an unbiased loss-of-adhesion CRISPR-Cas9 knockout screening method to identify proteins involved in BCR-controlled integrin-mediated adhesion. Illustrating the validity of our approach, several kinases with an established role in BCR-controlled adhesion, including BTK and PI3K, both targets for clinically applied inhibitors, are among the top hits of our screen. We anticipate that pharmacological inhibitors of the identified targets, e.g. PAK2 and PTK2B/PYK2, may have great clinical potential as therapy for lymphoma and leukemia patients. Furthermore, this screening platform is highly flexible and can be easily adapted to identify cell adhesion-regulatory proteins and signaling pathways for other stimuli, adhesion molecules, and cell types.


Subject(s)
CRISPR-Cas Systems , Leukemia , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Cell Adhesion/genetics , Humans , Integrins/metabolism , Leukemia/drug therapy , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Tumor Microenvironment
4.
Haematologica ; 101(3): e111-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26635033
6.
Blood ; 122(14): 2412-24, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23940282

ABSTRACT

Ibrutinib (PCI-32765) is a highly potent oral Bruton tyrosine kinase (BTK) inhibitor in clinical development for treating B-cell lymphoproliferative diseases. Patients with chronic lymphocytic leukemia (CLL) often show marked, transient increases of circulating CLL cells following ibrutinib treatments, as seen with other inhibitors of the B-cell receptor (BCR) pathway. In a phase 1 study of ibrutinib, we noted similar effects in patients with mantle cell lymphoma (MCL). Here, we characterize the patterns and phenotypes of cells mobilized among patients with MCL and further investigate the mechanism of this effect. Peripheral blood CD19(+)CD5(+) cells from MCL patients were found to have significant reduction in the expression of CXCR4, CD38, and Ki67 after 7 days of treatment. In addition, plasma chemokines such as CCL22, CCL4, and CXCL13 were reduced 40% to 60% after treatment. Mechanistically, ibrutinib inhibited BCR- and chemokine-mediated adhesion and chemotaxis of MCL cell lines and dose-dependently inhibited BCR, stromal cell, and CXCL12/CXCL13 stimulations of pBTK, pPLCγ2, pERK, or pAKT. Importantly, ibrutinib inhibited migration of MCL cells beneath stromal cells in coculture. We propose that BTK is essential for the homing of MCL cells into lymphoid tissues, and its inhibition results in an egress of malignant cells into peripheral blood. This trial was registered at www.clinicaltrials.gov as #NCT00114738.


Subject(s)
Antineoplastic Agents/therapeutic use , B-Lymphocytes/drug effects , Chemotaxis, Leukocyte/drug effects , Lymphoma, Mantle-Cell/blood , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adenine/analogs & derivatives , Antigens, CD19/biosynthesis , B-Lymphocytes/metabolism , Blotting, Western , CD5 Antigens/biosynthesis , Cell Adhesion/drug effects , Flow Cytometry , Humans , Lymphoma, Mantle-Cell/drug therapy , Piperidines , Protein Kinase Inhibitors/therapeutic use
7.
Blood ; 119(11): 2590-4, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22279054

ABSTRACT

Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)ß(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.


Subject(s)
Cell Adhesion/drug effects , Cell Movement/drug effects , Chemokines/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Fibronectins/metabolism , Flow Cytometry , Humans , Integrin alpha4beta1/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Piperidines , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/genetics , Signal Transduction/drug effects , Tumor Cells, Cultured , Vascular Cell Adhesion Molecule-1/metabolism
8.
Haematologica ; 96(11): 1653-61, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21828122

ABSTRACT

BACKGROUND: Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenvironment plays a critical role in sustaining the growth and survival of myeloma cells during tumor progression. Identification and functional analysis of the (adhesion) molecules involved in this interaction will provide important insights into the pathogenesis of multiple myeloma. DESIGN AND METHODS: Multiple myeloma cell lines and patients' samples were analyzed for expression of the adhesion molecule N-cadherin by immunoblotting, flow cytometry, immunofluorescence microscopy, immunohistochemistry and expression microarray. In addition, by means of blocking antibodies and inducible RNA interference we studied the functional consequence of N-cadherin expression for the myeloma cells, by analysis of adhesion, migration and growth, and for the bone marrow microenvironment, by analysis of osteogenic differentiation. RESULTS: The malignant plasma cells in approximately half of the multiple myeloma patients, belonging to specific genetic subgroups, aberrantly expressed the homophilic adhesion molecule N-cad-herin. N-cadherin-mediated cell-substrate or homotypic cell-cell adhesion did not contribute to myeloma cell growth in vitro. However, N-cadherin directly mediated the bone marrow localization/retention of myeloma cells in vivo, and facilitated a close interaction between myeloma cells and N-cadherin-positive osteoblasts. Furthermore, this N-cadherin-mediated interaction contributed to the ability of myeloma cells to inhibit osteoblastogenesis. CONCLUSIONS: Taken together, our data show that myeloma cells frequently display aberrant expression of N-cadherin and that N-cadherin mediates the interaction of myeloma cells with the bone marrow microenvironment, in particular the osteoblasts. This N-cadherin-mediated interaction inhibits osteoblast differentiation and may play an important role in the pathogenesis of myeloma bone disease.


Subject(s)
Cadherins/metabolism , Cell Communication , Cell Differentiation , Multiple Myeloma/metabolism , Neoplasm Proteins/metabolism , Osteoblasts/metabolism , Tumor Microenvironment , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cadherins/genetics , Cell Adhesion/genetics , Cell Line, Tumor , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Proteins/genetics , Osteoblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...