Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626772

ABSTRACT

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Subject(s)
Frontotemporal Dementia , Neurons , Osteopontin , tau Proteins , Osteopontin/metabolism , Osteopontin/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Animals , tau Proteins/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/pathology , Mutation/genetics
2.
Nat Commun ; 12(1): 6749, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799566

ABSTRACT

The hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Human Embryonic Stem Cells/physiology , Hypothalamus/embryology , Neurons/physiology , Cell Differentiation/genetics , Cell Line , Chromosome Mapping , Genome-Wide Association Study , Humans , Hypothalamus/cytology , Multifactorial Inheritance , RNA-Seq , Regulatory Elements, Transcriptional/genetics
3.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: mdl-34283813

ABSTRACT

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Subject(s)
Brain/metabolism , Energy Metabolism/genetics , Obesity/metabolism , Animals , Embryo, Mammalian , Gene Expression Regulation , Genetic Predisposition to Disease , Male , Mice , Obesity/genetics , RNA-Seq
4.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33630762

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Subject(s)
Bardet-Biedl Syndrome/metabolism , Chaperonins/metabolism , Hypothalamus/metabolism , Induced Pluripotent Stem Cells/metabolism , Microtubule-Associated Proteins/metabolism , Mutation, Missense , Neurons/metabolism , Second Messenger Systems , Amino Acid Substitution , Animals , Bardet-Biedl Syndrome/genetics , Chaperonins/genetics , Cyclic AMP/genetics , Cyclic AMP/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/genetics
5.
JCI Insight ; 4(3)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30728336

ABSTRACT

Intronic polymorphisms in the α-ketoglutarate-dependent dioxygenase gene (FTO) that are highly associated with increased body weight have been implicated in the transcriptional control of a nearby ciliary gene, retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Previous studies have shown that congenital Rpgrip1l hypomorphism in murine proopiomelanocortin (Pomc) neurons causes obesity by increasing food intake. Here, we show by congenital and adult-onset Rpgrip1l deletion in Pomc-expressing neurons that the hyperphagia and obesity are likely due to neurodevelopmental effects that are characterized by a reduction in the Pomc/Neuropeptide Y (Npy) neuronal number ratio and marked increases in arcuate hypothalamic-paraventricular hypothalamic (ARH-PVH) axonal projections. Biallelic RPGRIP1L mutations result in fewer cilia-positive human induced pluripotent stem cell-derived (iPSC-derived) neurons and blunted responses to Sonic Hedgehog (SHH). Isogenic human ARH-like embryonic stem cell-derived (ESc-derived) neurons homozygous for the obesity-risk alleles at rs8050136 or rs1421085 have decreased RPGRIP1L expression and have lower numbers of POMC neurons. RPGRIP1L overexpression increases POMC cell number. These findings suggest that apparently functional intronic polymorphisms affect hypothalamic RPGRIP1L expression and impact development of POMC neurons and their derivatives, leading to hyperphagia and increased adiposity.

6.
J Clin Endocrinol Metab ; 104(7): 2961-2970, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30811542

ABSTRACT

CONTEXT: Mutations in melanocortin receptor (MC4R) are the most common cause of monogenic obesity in children of European ancestry, but little is known about their prevalence in children from the minority populations in the United States. OBJECTIVE: This study aims to identify the prevalence of MC4R mutations in children with severe early-onset obesity of African American or Latino ancestry. DESIGN AND SETTING: Participants were recruited from the weight management clinics at two hospitals and from the institutional biobank at a third hospital. Sequencing of the MC4R gene was performed by whole exome or Sanger sequencing. Functional testing was performed to establish the surface expression of the receptor and cAMP response to its cognate ligand α-melanocyte-stimulating hormone. PARTICIPANTS: Three hundred twelve children (1 to 18 years old, 50% girls) with body mass index (BMI) >120% of 95th percentile of Centers for Disease Control and Prevention 2000 growth charts at an age <6 years, with no known pathological cause of obesity, were enrolled. RESULTS: Eight rare MC4R mutations (2.6%) were identified in this study [R7S, F202L (n = 2), M215I, G252D, V253I, I269N, and F284I], three of which were not previously reported (G252D, F284I, and R7S). The pathogenicity of selected variants was confirmed by prior literature reports or functional testing. There was no significant difference in the BMI or height trajectories of children with or without MC4R mutations in this cohort. CONCLUSIONS: Although the prevalence of MC4R mutations in this cohort was similar to that reported for obese children of European ancestry, some of the variants were novel.


Subject(s)
Black or African American/genetics , Hispanic or Latino/genetics , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Adolescent , Age of Onset , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Receptor, Melanocortin, Type 4/metabolism , Severity of Illness Index
7.
Nat Metab ; 1(2): 222-235, 2019 02.
Article in English | MEDLINE | ID: mdl-32694784

ABSTRACT

Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in Drosophila melanogaster and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.


Subject(s)
Hypothalamus/metabolism , Melanocortins/metabolism , Neurons/metabolism , T-Box Domain Proteins/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Body Weight , Energy Metabolism , Gene Expression Profiling , Green Fluorescent Proteins/genetics , Hypothalamus/cytology , Mice , Mice, Inbred C57BL , Pro-Opiomelanocortin/genetics , RNA, Messenger/genetics , T-Box Domain Proteins/genetics
8.
PLoS One ; 13(6): e0198637, 2018.
Article in English | MEDLINE | ID: mdl-29864154

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) has become the tool of choice for genome editing. Despite the fact that it has evolved as a highly efficient means to edit/replace coding sequence, CRISPR/Cas9 efficiency for "clean" editing of non-coding DNA remains low. We set out to introduce a single base-pair substitution in two intronic SNPs at the FTO locus without altering nearby non-coding sequence. Substitution efficiency increased up to 10-fold by treatment of human embryonic stem cells (ESC) with non-toxic levels of DMSO (1%) before CRISPR/Cas9 delivery. Treatment with DMSO did not result in CRISPR/Cas9 off-target effects or compromise the chromosomal stability of the ESC. Twenty-four hour treatment of human ESC with DMSO before CRISPR/Cas9 delivery may prove a simple means to increase editing efficiency of non-coding DNA without incorporation of undesirable mutations.


Subject(s)
CRISPR-Cas Systems/genetics , Dimethyl Sulfoxide/chemistry , Gene Editing/methods , Genetic Loci/genetics , Introns/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Cell Line , Human Embryonic Stem Cells , Humans , Polymorphism, Single Nucleotide/genetics
9.
PLoS One ; 13(5): e0197548, 2018.
Article in English | MEDLINE | ID: mdl-29847571

ABSTRACT

We have previously reported that Ildr2 knockdown via adenovirally-delivered shRNA causes hepatic steatosis in mice. In the present study we investigated hepatic biochemical and anatomic phenotypes of Cre-mediated Ildr2 knock-out mice. Liver-specific Ildr2 knock-out mice were generated in C57BL/6J mice segregating for a floxed (exon 1) allele of Ildr2, using congenital and acute (10-13-week-old male mice) Cre expression. In addition, Ildr2 shRNA was administered to Ildr2 knock-out mice to test the effects of Ildr2 shRNA, per se, in the absence of Ildr2 expression. RNA sequencing was performed on livers of these knockdown and knockout mice. Congenital and acute liver-specific and hepatocyte-specific knockout mice did not develop hepatic steatosis. However, administration of Ildr2 shRNA to Ildr2 knock-out mice did cause hepatic steatosis, indicating that the Ildr2 shRNA had apparent "off-target" effects on gene(s) other than Ildr2. RNA sequencing and BLAST sequence alignment revealed Dgka as a candidate gene mediating these "off-target" effects. Ildr2 shRNA is 63% homologous to the Dgka gene, and Dgka expression decreased only in mice displaying hepatic steatosis. Dgka encodes diacylglycerol kinase (DGK) alpha, one of a family of DGKs which convert diacylglycerides to phosphatidic acid for second messenger signaling. Dgka knockdown mice would be expected to accumulate diacylglyceride, contributing to the observed hepatic steatosis. We conclude that ILDR2 plays a negligible role in hepatic steatosis. Rather, hepatic steatosis observed previously in Ildr2 knockdown mice was likely due to shRNA targeting of Dgka and/or other "off-target" genes. We propose that the gene candidates identified in this follow-up study may lead to identification of novel regulators of hepatic lipid metabolism.


Subject(s)
Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Gene Knockdown Techniques , Gene Knockout Techniques , Hepatocytes/metabolism , Lipid Metabolism/genetics , Liver/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , RNA, Small Interfering/genetics , Sequence Analysis, RNA , Triglycerides/metabolism
10.
J Cell Physiol ; 230(9): 2059-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25639214

ABSTRACT

Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic mechanisms. To identify involved factors, we evaluated the effect on gene expression of direct addition of dyslipidemic human serum samples to cultured human hepatoma cells (HepG2). Sera were selected on the basis of cholesterol level, considering this parameter as mostly linked to dietary intake. Cells were treated with 32 sera from hypercholesterolemic and normocholesterolemic subjects to identify differentially regulated mRNAs using DNA microarray analysis. We identified several mRNAs with the highest modulations in cells treated with dyslipidemic sera versus cells treated with normal sera. Since the two serum groups had variable polyunsaturated fatty acids (PUFAs) contents, selected mRNAs were further assessed for their regulation by docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA). Four genes resulted both affected by serum composition and PUFAs: 3-hydroxy-3-methylglutaryl-CoenzymeA synthase 2 (HMGCS2), glutathione S-transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 (LEAP2) and apolipoprotein M (ApoM). HMGCS2 expression appears the most relevant and was also found modulated via transcription factors peroxysome proliferator activated receptor α (PPARα) and forkhead box O1 (FoxO1). Our data indicate that expression levels of the selected mRNAs, primarily of HMGCS2, could represent a reference of nutritional intake, PUFAs effects and dyslipidemic diseases pathogenesis.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Dyslipidemias/blood , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/drug therapy , Serum/metabolism , Antimicrobial Cationic Peptides/biosynthesis , Apolipoproteins/biosynthesis , Apolipoproteins M , Arachidonic Acid/administration & dosage , Blood Proteins/biosynthesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Docosahexaenoic Acids/administration & dosage , Dyslipidemias/metabolism , Eicosapentaenoic Acid/administration & dosage , Glutathione Transferase/biosynthesis , Hep G2 Cells , Humans , Hydroxymethylglutaryl-CoA Synthase/biosynthesis , Lipocalins/biosynthesis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Oligonucleotide Array Sequence Analysis , Serum/chemistry
11.
Cell Biochem Funct ; 32(8): 637-46, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25264165

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) is the rate limiting enzyme in unsaturated fatty acid biosynthesis. This enzyme has an important role in the regulation of hepatic lipogenesis and lipid oxidation, and alterations in these pathways may lead to several diseases. We examined, in HepG2 cell cultures, the mechanism of SCD1 regulation considering the involvement of two transcription factors: liver X receptor alpha (LXRα) and sterol regulatory element-binding protein-1 (SREBP-1), also investigating the effect of dietary polyunsaturated fatty acids (PUFAs) on this process. The analysis of SCD1 promoter allowed to identify a functional SREBP-1 binding site (SRE 1). LXRα activation increased SCD1 protein level through upregulation of SREBP-1 and its consequent binding to SRE 1 sequence. Polyunsaturated docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) and arachidonic acid (AA, C20:4) were able to reduce SREBP-1 binding to SCD1 promoter, while saturated stearic acid (SA, C18:0) did not give any effect. Surface plasmon resonance analysis showed a direct binding of DHA, EPA and AA to LXRα. These data indicate a direct inhibitory interaction of PUFAs with LXRα, a consequent reduction of SREBP-1 and of its binding to SCD1 promoter. This information provides a mechanism to explain the regulation of lipogenic pathways induced by PUFAs.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Orphan Nuclear Receptors/metabolism , Response Elements , Stearoyl-CoA Desaturase/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Hep G2 Cells , Humans , Liver X Receptors , Protein Binding , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
12.
Electromagn Biol Med ; 33(4): 289-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-23977831

ABSTRACT

We evaluated the effects, on cultured human SaOS-2 cells, of exposures to the low frequency (LF) electric signal (60 kHz sinusoidal wave, 24.5 V peak-to-peak voltage, amplitude modulated by a 12.5 Hz square wave, 50% duty cycle) from an apparatus of current clinical use in bone diseases requiring regenerating processes. Cells in flasks were exposed to a capacitively coupled electric field giving electric current density in the sample of 4 µA/cm(2). The whole expressed cellular mRNAs were systematically analyzed by "DNA microchips" technology to identify all individual species quantitatively affected by field exposure. Comparisons were made between RNA samples from exposed and control sham-exposed cells. Results indicated that immediately and 4 h after exposure there were almost no differentially modulated mRNA species. However, samples obtained at 24 h after exposure showed a small number of limitedly differential signals (7 down-regulated and 3 up-regulated with a cut-off value of ±1.5; 38 and 11, respectively, with a cut-off value of ±1.3), which included mostly mRNA encoding transcription factors and DNA binding proteins. Nevertheless, in identical experimental conditions, we previously demonstrated enzymatic changes of alkaline phosphatase occurring immediately after exposure and declining in a few hours. Therefore, since enzymatic changes occur before those observed at gene regulation level, it is conceivable that only earlier effects are directly due the treatment and then these effects are later able to affect gene expression only indirectly.


Subject(s)
Bone and Bones/cytology , Electromagnetic Fields , Gene Expression Regulation/radiation effects , Bone and Bones/radiation effects , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...