Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Expert Opin Drug Discov ; 19(5): 565-585, 2024 May.
Article in English | MEDLINE | ID: mdl-38509691

ABSTRACT

INTRODUCTION: Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED: The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION: Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Drug Development , Drug Discovery , Neurodegenerative Diseases , Caenorhabditis elegans/drug effects , Animals , Humans , Drug Discovery/methods , Drug Development/methods , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical/methods , Neurodevelopmental Disorders/drug therapy , Neurodevelopmental Disorders/physiopathology , Nervous System Diseases/drug therapy , Nervous System Diseases/physiopathology
2.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370834

ABSTRACT

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.

3.
Front Pharmacol ; 13: 908696, 2022.
Article in English | MEDLINE | ID: mdl-35685626

ABSTRACT

Due to the increase in life expectancy worldwide, age-related disorders such as neurodegenerative diseases (NDs) have become more prevalent. Conventional treatments comprise drugs that only attenuate some of the symptoms, but fail to arrest or delay neuronal proteotoxicity that characterizes these diseases. Due to their diverse biological activities, imidazole rings are intensively explored as powerful scaffolds for the development of new bioactive molecules. By using C. elegans, our work aims to explore novel biological roles for these compounds. To this end, we have tested the in vivo anti-proteotoxic effects of imidazolium salts. Since NDs have been largely linked to impaired antioxidant defense mechanisms, we focused on 1-Mesityl-3-(3-sulfonatopropyl) imidazolium (MSI), one of the imidazolium salts that we identified as capable of improving iron-induced oxidative stress resistance in wild-type animals. By combining mutant and gene expression analysis we have determined that this protective effect depends on the activation of the Heat Shock Transcription Factor (HSF-1), whereas it is independent of other canonical cytoprotective molecules such as abnormal Dauer Formation-16 (DAF-16/FOXO) and Skinhead-1 (SKN-1/Nrf2). To delve deeper into the biological roles of MSI, we analyzed the impact of this compound on previously established C. elegans models of protein aggregation. We found that MSI ameliorates ß-amyloid-induced paralysis in worms expressing the pathological protein involved in Alzheimer's Disease. Moreover, this compound also delays age-related locomotion decline in other proteotoxic C. elegans models, suggesting a broad protective effect. Taken together, our results point to MSI as a promising anti-proteotoxic compound and provide proof of concept of the potential of imidazole derivatives in the development of novel therapies to retard age-related proteotoxic diseases.

4.
Pharmacol Res Perspect ; 9(2): e00721, 2021 04.
Article in English | MEDLINE | ID: mdl-33641258

ABSTRACT

Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.


Subject(s)
Caenorhabditis elegans/physiology , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Animals , Drug Evaluation, Preclinical/economics , High-Throughput Screening Assays/economics , High-Throughput Screening Assays/methods , Humans , Models, Animal , Species Specificity
5.
J Mater Sci Mater Med ; 31(2): 22, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32002683

ABSTRACT

The role Beta-cyclodextrin (ßCD) on improving biocompatibility on healthy cellular and animal models was studied upon a formulation obtained from the development of a simple coating procedure. The obtained nanosystems were thoroughly characterized by FTIR, TGA, atomic absorption spectroscopy, dynamic light scattering and zeta potential, TEM/HR-TEM and magnetic properties. ßCD might interact with the magnetic core through hosting OA. It is feasible that the nanocomposite is formed by nanoparticles of MG@OA dispersed in a ßCD matrix. The evaluation of ßCD role on biocompatibility was performed on two healthy models. To this end, in vivo studies were carried out on Caenorhabditis elegans. Locomotion and progeny were evaluated after exposure animals to MG, MG@OA, and MG@OA-ßCD (10 to 500 µg/mL). The influence of ßCD on cytotoxicity was explored in vitro on healthy rat aortic endothelial cells, avoiding alteration in the results derived from the use of transformed cell lines. Biological studies demonstrated that ßCD attaching improves MG biocompatibility.


Subject(s)
Magnetics , Materials Testing , Nanocomposites/chemistry , Nanocomposites/toxicity , beta-Cyclodextrins/chemistry , Animals , Caenorhabditis elegans , Cell Survival , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Molecular Structure , Nanocomposites/administration & dosage , Rats , Rats, Wistar , Surface Properties
6.
Nature ; 573(7772): 135-138, 2019 09.
Article in English | MEDLINE | ID: mdl-31462774

ABSTRACT

An animal's stress response requires different adaptive strategies depending on the nature and duration of the stressor. Whereas acute stressors, such as predation, induce a rapid and energy-demanding fight-or-flight response, long-term environmental stressors induce the gradual and long-lasting activation of highly conserved cytoprotective processes1-3. In animals across the evolutionary spectrum, continued activation of the fight-or-flight response weakens the animal's resistance to environmental challenges4,5. However, the molecular and cellular mechanisms that regulate the trade-off between the flight response and long-term stressors are poorly understood. Here we show that repeated induction of the flight response in Caenorhabditis elegans shortens lifespan and inhibits conserved cytoprotective mechanisms. The flight response activates neurons that release tyramine, an invertebrate analogue of adrenaline and noradrenaline. Tyramine stimulates the insulin-IGF-1 signalling (IIS) pathway and precludes the induction of stress response genes by activating an adrenergic-like receptor in the intestine. By contrast, long-term environmental stressors, such as heat or oxidative stress, reduce tyramine release and thereby allow the induction of cytoprotective genes. These findings demonstrate that a neural stress hormone supplies a state-dependent neural switch between acute flight and long-term environmental stress responses and provides mechanistic insights into how the flight response impairs cellular defence systems and accelerates ageing.


Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Cytoprotection , Insulin/metabolism , Tyramine/metabolism , Active Transport, Cell Nucleus , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Nucleus/metabolism , Forkhead Transcription Factors/metabolism , Insulin-Like Growth Factor I/metabolism , Intestinal Mucosa/metabolism , Longevity , Neurons/metabolism , Receptors, Adrenergic/metabolism , Receptors, Catecholamine/metabolism , Signal Transduction , Stress, Psychological
7.
PLoS Negl Trop Dis ; 12(12): e0007021, 2018 12.
Article in English | MEDLINE | ID: mdl-30557347

ABSTRACT

Nematode parasites cause substantial morbidity to billions of people and considerable losses in livestock and food crops. The repertoire of effective anthelmintic compounds for treating these parasitoses is very limited, as drug development has been delayed for decades. Moreover, resistance has become a global concern in livestock parasites and is an emerging issue for human helminthiasis. Therefore, anthelmintics with novel mechanisms of action are urgently needed. Taking advantage of Caenorhabditis elegans as an established model system, we here screened the nematicidal potential of novel imidazolium and imidazole derivatives. One of these derivatives, diisopropylphenyl-imidazole (DII), is lethal to C. elegans at both mature and immature stages. This lethal effect appears to be specific because DII concentrations which prove to be toxic to C. elegans do not induce significant lethality on bacteria, Drosophila melanogaster, and HEK-293 cells. Our analysis of DII action on C. elegans mutant strains determined that, in the adult stage, null mutants of unc-29 are resistant to the drug. Muscle expression of this gene completely restores DII sensitivity. UNC-29 has been largely reported as an essential constituent of the levamisole-sensitive muscle nicotinic receptor (L-AChR). Nevertheless, null mutants in unc-63 and lev-8 (essential and non-essential subunits of L-AChRs, respectively) are as sensitive to DII as the wild-type strain. Therefore, our results suggest that DII effects on adult nematodes rely on a previously unidentified UNC-29-containing muscle AChR, different from the classical L-AChR. Interestingly, DII targets appear to be different between larvae and adults, as unc-29 null mutant larvae are sensitive to the drug. The existence of more than one target could delay resistance development. Its lethality on C. elegans, its harmlessness in non-nematode species and its novel and dual mechanism of action make DII a promising candidate compound for anthelmintic therapy.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Imidazoles/pharmacology , Animals , Anthelmintics/chemical synthesis , Anthelmintics/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Survival/drug effects , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Female , HEK293 Cells , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Male , Molecular Structure , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
8.
J Immunol ; 196(1): 407-15, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26582950

ABSTRACT

The cytokine IL-1ß is intimately linked to many pathological inflammatory conditions. Mature IL-1ß secretion requires cleavage by the inflammasome. Recent evidence indicates that many cell death signal adaptors have regulatory roles in inflammasome activity. These include the apoptosis inducers FADD and caspase 8, and the necroptosis kinases receptor interacting protein kinase 1 (RIPK1) and RIPK3. PGAM5 is a mitochondrial phosphatase that has been reported to function downstream of RIPK3 to promote necroptosis and IL-1ß secretion. To interrogate the biological function of PGAM5, we generated Pgam5(-/-) mice. We found that Pgam5(-/-) mice were smaller compared with wild type littermates, and male Pgam5(-/-) mice were born at sub-Mendelian ratio. Despite these growth and survival defects, Pgam5(-/-) cells responded normally to multiple inducers of apoptosis and necroptosis. Rather, we found that PGAM5 is critical for IL-1ß secretion in response to NLRP3 and AIM2 inflammasome agonists. Moreover, vesicular stomatosis virus-induced IL-1ß secretion was impaired in Pgam5(-/-) bone marrow-derived macrophages, but not in Ripk3(-/-) bone marrow-derived dendritic cells, indicating that PGAM5 functions independent of RIPK3 to promote inflammasome activation. Mechanistically, PGAM5 promotes ASC polymerization, maintenance of mitochondrial integrity, and optimal reactive oxygen species production in response to inflammasome signals. Hence PGAM5 is a novel regulator of inflammasome and caspase 1 activity that functions independently of RIPK3.


Subject(s)
Apoptosis/immunology , Inflammasomes/immunology , Interleukin-1beta/metabolism , Macrophages/immunology , Phosphoric Monoester Hydrolases/genetics , Animals , Carrier Proteins/immunology , Caspase 1/immunology , Caspase 8/immunology , Cells, Cultured , DNA-Binding Proteins/immunology , Dendritic Cells/immunology , Fas-Associated Death Domain Protein/immunology , Inflammation/immunology , Interleukin-1beta/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/immunology , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphoprotein Phosphatases , Phosphoric Monoester Hydrolases/metabolism , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Signal Transduction/immunology , Vesicular stomatitis Indiana virus/immunology
9.
Biochemistry ; 52(47): 8480-8, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24164482

ABSTRACT

The differential action of the novel agonist JN403 at neuronal α7 and muscle nicotinic receptors (AChRs) was explored by using a combination of functional and structural approaches. Single-channel recordings reveal that JN403 is a potent agonist of α7 but a very low-efficacy agonist of muscle AChRs. JN403 elicits detectable openings of α7 and muscle AChRs at concentrations ~1000-fold lower and ~20-fold higher, respectively, than that for ACh. Single-channel activity elicited by JN403 is very similar to that elicited by ACh in α7 but profoundly different in muscle AChRs, where openings are brief and infrequent and do not appear in clusters at any concentration. JN403 elicits single-channel activity of muscle AChRs lacking the ε subunit, with opening events being more frequent and prolonged than those of wild-type AChRs. This finding is in line with the molecular docking studies predicting that JN403 may form a hydrogen bond required for potent activation at the α-δ but not at the α-ε binding site. JN403 does not elicit detectable Ca²âº influx in muscle AChRs but inhibits (±)-epibatidine-elicited influx mainly by a noncompetitive mechanism. Such inhibition is compatible with single-channel recordings revealing that JN403 produces open-channel blockade and early termination of ACh-elicited clusters, and it is therefore also a potent desensitizing enhancer of muscle AChRs. The latter mechanism is supported by the JN403-induced increase in the level of binding of [³H]cytisine and [³H]TCP to resting AChRs. Elucidation of the differences in activity of JN403 between neuronal α7 and muscle AChRs provides further insights into mechanisms underlying selectivity for α7 AChRs.


Subject(s)
Carbamates/pharmacology , Muscle Proteins/agonists , Nerve Tissue Proteins/agonists , Nicotinic Agonists/pharmacology , Quinuclidines/pharmacology , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Calcium Signaling/drug effects , Carbamates/metabolism , Cell Line , Fetal Proteins/agonists , Fetal Proteins/chemistry , Fetal Proteins/genetics , Fetal Proteins/metabolism , Humans , Kinetics , Membrane Potentials/drug effects , Mice , Molecular Conformation , Molecular Docking Simulation , Muscle Proteins/chemistry , Muscle Proteins/genetics , Muscle Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nicotinic Agonists/metabolism , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Protein Binding , Protein Subunits/agonists , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Quinuclidines/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Torpedo , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
10.
Methods Mol Biol ; 979: 65-70, 2013.
Article in English | MEDLINE | ID: mdl-23397389

ABSTRACT

Apoptosis and necrosis are two major forms of cell death observed in normal and disease pathologies. Although there are many assays for detection of apoptosis, relatively few assays are available for measuring necrosis. A key signature for necrotic cells is the permeabilization of the plasma membrane. This event can be quantified in tissue culture settings by measuring the release of the intracellular enzyme lactate dehydrogenase (LDH). When combined with other methods, measuring LDH release is a useful method for the detection of necrosis. In this chapter, we describe the step-by-step procedure for detection of LDH release from necrotic cells using a microtiter plate-based colorimetric absorbance assay.


Subject(s)
Colorimetry/methods , L-Lactate Dehydrogenase/metabolism , Necrosis/enzymology , Biocatalysis , Cell Culture Techniques , Electron Transport , Humans , NAD/metabolism , Tetrazolium Salts/metabolism
11.
Blood ; 119(10): 2368-75, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22262768

ABSTRACT

Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4(-/-) or to Myd88(-/-) macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1(-/-)) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.


Subject(s)
Heme/pharmacology , Macrophages/drug effects , Reactive Oxygen Species/metabolism , Tumor Necrosis Factors/metabolism , Animals , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Imidazoles/pharmacology , Indoles/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Macrophages/cytology , Macrophages/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NIH 3T3 Cells , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factors/pharmacology
12.
Life Sci ; 85(11-12): 444-9, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19632243

ABSTRACT

AIMS: Even though the presence of alpha7 nicotinic receptor (nAChR) in lymphocytes has been demonstrated, its functional role still remains elusive. The aim of our study was to characterize alpha7 nAChRs in human lymphocytes upon phytohemagglutinin (PHA) stimulation. MAIN METHODS: Lymphocytes were activated with the mitogen PHA. alpha7 nAChRs were studied by reverse transcription-polymerase chain reaction (RT-PCR), real time PCR, flow cytometry and confocal laser scanning microscopy. The effects of nicotinic drugs on PHA-induced proliferation was evaluated by the [(3)H]-thymidine incorporation assay. KEY FINDINGS: We show that the expression of functional alpha7 receptors increases after PHA stimulation. The activation of peripheral lymphocytes by PHA increases 2.2-fold the alpha7 subunit mRNA expression and 4-fold the binding of the antagonist alpha-bungarotoxin (alpha-BTX) with respect to non activated lymphocytes. By measuring the increase of intracellular calcium in response to nicotine we determine that alpha7 receptors in lymphocytes are functional. Nicotinic drugs differentially modulate T cell activation. While nicotine tends to inhibit proliferative responses, specific alpha7 antagonists, such as alpha-BTX and methyllycaconitine, enhance cell division. SIGNIFICANCE: This study reveals that the alpha7 receptor modulates lymphocyte activation and contributes to clarifying the role of the non neuronal cholinergic system in the immune response.


Subject(s)
Lymphocyte Activation/physiology , Receptors, Nicotinic/physiology , Aconitine/analogs & derivatives , Aconitine/pharmacology , Calcium/metabolism , Cells, Cultured , Choline O-Acetyltransferase/metabolism , Flow Cytometry , Humans , Indicators and Reagents , Lymphocyte Activation/drug effects , Microscopy, Confocal , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Phytohemagglutinins/pharmacology , Receptors, Nicotinic/drug effects , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Thymidine/metabolism , alpha7 Nicotinic Acetylcholine Receptor
13.
J Neurosci ; 29(18): 6022-32, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19420269

ABSTRACT

Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.


Subject(s)
Binding Sites , Cysteine/metabolism , Nicotinic Agonists/metabolism , Receptors, Nicotinic/chemistry , Acetylcholine/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Amino Acids/genetics , Binding Sites/drug effects , Binding Sites/genetics , Binding, Competitive/drug effects , Binding, Competitive/genetics , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Bungarotoxins/metabolism , Cell Line, Transformed , Cysteine/genetics , Dose-Response Relationship, Drug , Electric Stimulation/methods , Gene Expression/physiology , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Membrane Potentials/drug effects , Membrane Potentials/genetics , Models, Molecular , Mutagenesis, Site-Directed/methods , Patch-Clamp Techniques , Protein Conformation , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Structure-Activity Relationship , Transfection/methods , alpha7 Nicotinic Acetylcholine Receptor
14.
Biochim Biophys Acta ; 1778(2): 521-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18036335

ABSTRACT

The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.


Subject(s)
Ion Channel Gating/physiology , Receptors, Nicotinic/physiology , Amino Acid Sequence , Molecular Sequence Data , Patch-Clamp Techniques , Receptors, Nicotinic/chemistry , Sequence Homology, Amino Acid , Thermodynamics
15.
Biophys J ; 92(1): 76-86, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17028140

ABSTRACT

The adult form of the nicotinic acetylcholine receptor (AChR) consists of five subunits (alpha(2)betaepsilondelta), each having four transmembrane domains (M1-M4). The atomic model of the nicotinic acetylcholine receptor shows that the pore-lining M2 domains make no extensive contacts with the rest of the transmembrane domains. However, there are several sites where close appositions between segments occur. It has been suggested that the pair alphaM1-F15' and alphaM2-L11' is one of the potential interactions between segments. To determine experimentally if these residues are interacting and to explore if this interhelical interaction is essential for channel gating, we combined mutagenesis with single-channel kinetic analysis. Mutations in alphaM1-F15' lead to profound changes in the opening rate and slighter changes in the closing rate. Channel gating is impaired as the volume of the residue increases. Rate-equilibrium linear free-energy relationship analysis reveals an approximately 70% open-state-like environment for alphaM1-F15' at the transition state of the gating reaction, suggesting that it moves early during the gating process. Replacing the residue at alphaM1-15' by that at alphaM2-11' and vice versa profoundly alters gating, but the combination of the two mutations restores gating to near normal, indicating that alphaM1-F15' and alphaM2-L11' are interchangeable. Double-mutant cycle analysis shows that these residues are energetically coupled. Thus, the interaction between M1 and M2 plays a key role in channel gating.


Subject(s)
Receptors, Nicotinic/chemistry , Acetylcholine/metabolism , Animals , DNA, Complementary/metabolism , Humans , Kidney/metabolism , Kinetics , Mice , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Patch-Clamp Techniques , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics
16.
J Neuroimmunol ; 160(1-2): 154-61, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15710468

ABSTRACT

The presence of nicotinic receptors (nAChRs) in blood cells has been demonstrated. However, little is known about their functional roles. We have detected mRNA of alpha7 nAChR in peripheral human lymphocytes and determined that its expression is highly variable among individuals and within the same individual at different times. Upregulation of alpha7 is systematically observed after incubation of lymphocytes with nicotine or alpha-bungarotoxin. In addition, the incubation with these drugs decreases the percentage of apoptotic cells induced by the exposure to cortisol. Our results suggest that alpha7 nAChRs are involved in the modulation of cortisol-induced apoptosis.


Subject(s)
Apoptosis/immunology , Lymphocytes/cytology , Lymphocytes/metabolism , Receptors, Nicotinic/physiology , Adult , Animals , Apoptosis/drug effects , Bungarotoxins/pharmacology , Cells, Cultured , Humans , Hydrocortisone/pharmacology , Lymphocytes/drug effects , Muscle, Skeletal/metabolism , Nicotine/pharmacology , Nicotinic Antagonists/pharmacology , Oxidation-Reduction , Protein Subunits/biosynthesis , Protein Subunits/genetics , RNA, Messenger/analysis , Rats , Rats, Wistar , Receptors, Nicotinic/biosynthesis , Receptors, Nicotinic/genetics , Tetrazolium Salts/metabolism , Thiazoles/metabolism , Up-Regulation/drug effects , alpha7 Nicotinic Acetylcholine Receptor
17.
J Biol Chem ; 279(35): 36372-81, 2004 Aug 27.
Article in English | MEDLINE | ID: mdl-15201284

ABSTRACT

Levamisole is an anthelmintic agent that exerts its therapeutic effect by acting as a full agonist of the nicotinic receptor (AChR) of nematode muscle. Its action at the mammalian muscle AChR has not been elucidated to date despite its wide use as an anthelmintic in humans and cattle. By single channel and macroscopic current recordings, we investigated the interaction of levamisole with the mammalian muscle AChR. Levamisole activates mammalian AChRs. However, single channel openings are briefer than those activated by acetylcholine (ACh) and do not appear in clusters at high concentrations. The peak current induced by levamisole is about 3% that activated by ACh. Thus, the anthelmintic acts as a weak agonist of the mammalian AChR. Levamisole also produces open channel blockade of the AChR. The apparent affinity for block (190 microm at -70 mV) is similar to that of the nematode AChR, suggesting that differences in channel activation kinetics govern the different sensitivity of nematode and mammalian muscle to anthelmintics. To identify the structural basis of this different sensitivity, we performed mutagenesis targeting residues in the alpha subunit that differ between vertebrates and nematodes. The replacement of the conserved alphaGly-153 with the homologous glutamic acid of nematode AChR significantly increases the efficacy of levamisole to activate channels. Channel activity takes place in clusters having two different kinetic modes. The kinetics of the high open probability mode are almost identical when the agonist is ACh or levamisole. It is concluded that alphaGly-153 is involved in the low efficacy of levamisole to activate mammalian muscle AChRs.


Subject(s)
Antinematodal Agents/pharmacology , Levamisole/pharmacology , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Glutamic Acid/chemistry , Glycine/chemistry , Humans , Kinetics , Membrane Potentials , Mice , Models, Chemical , Molecular Sequence Data , Muscles/drug effects , Mutagenesis , Mutagenesis, Site-Directed , Mutation , Nematoda , Patch-Clamp Techniques , Receptors, Cholinergic/metabolism , Sensitivity and Specificity , Time Factors , Transfection
18.
Mol Pharmacol ; 62(2): 406-14, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12130694

ABSTRACT

The nicotinic acetylcholine receptor (nAChR) is a pentamer of homologous subunits with composition alpha(2)(beta)(epsilon)(delta) in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 8' of the M3 domain is phenylalanine in all heteromeric alpha subunits, whereas it is a hydrophobic nonaromatic residue in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle nAChR activation by combining mutagenesis with single-channel kinetic analysis. Construction of nAChRs carrying different numbers of phenylalanine residues at 8' reveals that the mean open time decreases as a function of the number of phenylalanine residues. Thus, all subunits contribute through this position independently and additively to the channel closing rate. The impairment of channel opening increases when the number of phenylalanine residues at 8' increases from two (wild-type nAChR) to five. The gating equilibrium constant of the latter mutant nAChR is 13-fold lower than that of the wild-type nAChR. The replacement of (alpha)F8', (beta)L8', (delta)L8', and (epsilon)V8' by a series of hydrophobic amino acids reveals that the structural bases of the observed kinetic effects are nonequivalent among subunits. In the alpha subunit, hydrophobic amino acids at 8' lead to prolonged channel lifetimes, whereas they lead either to normal kinetics (delta and epsilon subunits) or impaired channel gating (beta subunit) in the non-alpha subunits. The overall results indicate that 8' positions of the M3 domains of all subunits contribute to channel gating.


Subject(s)
Phenylalanine/metabolism , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Energy Metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenylalanine/genetics , Protein Structure, Tertiary , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Sequence Homology, Amino Acid , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...