Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909837

ABSTRACT

We describe a proof-of-principle experiment aiming to investigate the inverse-square law of gravitation at the centimeter scale. The sensor is a two-stage torsion pendulum, while actuation is accomplished by a variable liquid mass. The time-varying gravitational force is related to the level of the circulating fluid in one or two containers at a short distance from the test mass, with all moving mechanical parts positioned at a large distance. We provide a description of the apparatus and present the first results. We identified a systematic effect of thermal origin, producing offsets of few fNm in torque and of about 10 pN in force. When this effect is neutralized, the measurements agree well with the predictions of simulations. We also discuss the upcoming instrument upgradations and the expected sensitivity improvement that will allow us to perform measurements with adequate accuracy to investigate the unexplored regions of the α-λ parameter space of a Yukawa-like deviation from the Newtonian potential.

3.
J Vis Exp ; (145)2019 03 18.
Article in English | MEDLINE | ID: mdl-30933078

ABSTRACT

To orient themselves in their environment, animals integrate a wide array of external cues, which interact with several internal factors, such as personality. Here, we describe a behavioral protocol designed for the study of the influence of zebrafish personality on their orientation response to multiple external environmental cues, specifically water currents and magnetic fields. This protocol aims to understand whether proactive or reactive zebrafish display different rheotactic thresholds (i.e., the flow speed at which the fish start swimming upstream) when the surrounding magnetic field changes its direction. To identify zebrafish with the same personality, fish are introduced in the dark half of a tank connected with a narrow opening to a bright half. Only proactive fish explore the novel, bright environment. Reactive fish do not exit the dark half of the tank. A swimming tunnel with low flow rates is used to determine the rheotactic threshold. We describe two setups to control the magnetic field in the tunnel, in the range of the earth's magnetic field intensity: one that controls the magnetic field along the flow direction (one dimension) and one that allows a three-axial control of the magnetic field. Fish are filmed while experiencing a stepwise increase of the flow speed in the tunnel under different magnetic fields. Data on the orientation behavior are collected through a video-tracking procedure and applied to a logistic model to allow the determination of the rheotactic threshold. We report representative results collected from shoaling zebrafish. Specifically, these demonstrate that only reactive, prudent fish show variations of the rheotactic threshold when the magnetic field varies in its direction, while proactive fish do not respond to magnetic field changes. This methodology can be applied to the study of magnetic sensitivity and rheotactic behavior of many aquatic species, both displaying solitary or shoaling swimming strategies.


Subject(s)
Behavior, Animal/physiology , Magnetic Fields , Personality , Zebrafish/physiology , Animals , Orientation , Rheology , Swimming/physiology
4.
Article in English | MEDLINE | ID: mdl-27915151

ABSTRACT

Rheotaxis, the unconditioned orienting response to water currents, is a main component of fish behavior. Rheotaxis is achieved using multiple sensory systems, including visual and tactile cues. Rheotactic orientation in open or low-visibility waters might also benefit from the stable frame of reference provided by the geomagnetic field, but this possibility has not been explored before. Zebrafish (Danio rerio) form shoals living in freshwater systems with low visibility, show a robust positive rheotaxis, and respond to geomagnetic fields. Here, we investigated whether a static magnetic field in the Earth-strength range influenced the rheotactic threshold of zebrafish in a swimming tunnel. The direction of the horizontal component of the magnetic field relative to water flow influenced the rheotactic threshold of fish as part of a shoal, but not of fish tested alone. Results obtained after disabling the lateral line of shoaling individuals with Co2+ suggest that this organ system is involved in the observed magneto-rheotactic response. These findings constitute preliminary evidence that magnetic fields influence rheotaxis and suggest new avenues for further research.


Subject(s)
Magnetic Fields , Swimming , Zebrafish/physiology , Animals , Fresh Water
5.
Int J Immunopathol Pharmacol ; 29(3): 516-22, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26684625

ABSTRACT

The role of endothelium in the progression of atheromasic disease has already been demonstrated. Endothelin-1 (ET-1) is released from endothelial cells during acute and chronic vascular damage and it appears to be the strongest vasoconstrictor agent known.The aim of this study is to investigate the amount of endothelial damage in patients with unstable angina (UA), as defined by serum levels of ET-1, to verify a possible correlation with increased ischaemic damage by evaluation of serum N-terminal pro-brain natriuretic peptide (NT-proBNP) and interleukin 8 (IL-8) levels.Serum levels of ET-1, IL-8 and NT-proBNP obtained from 10 patients affected by low-risk UA were compared to those belonging to eight healthy subjects. In order to compare the laboratory data pertaining to the two populations, a Student's t-test and a Mann-Whitney U test were performed.Levels of ET-1, IL-8 and NT-proBNP in samples of peripheral blood of patients affected by UA were significantly elevated, compared with those of the control group. The linear correlation analysis demonstrated a positive and significant correlation between levels of ET-1 and IL-8, between levels of ET-1 and NT-proBNP, and between levels of IL-8 and NT-proBNP in subjects affected by UA.Early elevated levels of ET-1, IL-8 and NT-proBNP in patients with UA show a coexistence between ischaemic insults and endothelial damages. A positive and significant linear correlation between levels of ET-1 and IL-8, between levels of ET-1 and NT-proBNP, and between levels of IL-8 and NT-proBNP confirms that an increased ischaemic insult is correlated to inflammation signs and endothelium damage signs.In patients with UA, ischaemia is always associated with a systemic immuno-mediated activity induced by acute endothelial damage. We suggest early administration of ET-1-selective receptor blockers and anti-inflammatory drugs.


Subject(s)
Angina, Unstable/blood , Endothelial Cells/metabolism , Endothelin-1/blood , Immunologic Factors/blood , Interleukin-8/blood , Myocardial Ischemia/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Acute Disease , Adult , Angina, Unstable/metabolism , Angina, Unstable/pathology , Endothelial Cells/pathology , Endothelium/metabolism , Endothelium/pathology , Female , Humans , Inflammation/blood , Inflammation/metabolism , Inflammation/pathology , Male , Middle Aged , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology
6.
Rev Sci Instrum ; 79(7): 074501, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18681722

ABSTRACT

This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.


Subject(s)
Interferometry/instrumentation , Noise , Calibration , Equipment Design , Interferometry/methods , Lasers , Models, Statistical , Reproducibility of Results , Research Design , Transducers
9.
Neural Netw ; 16(3-4): 297-319, 2003.
Article in English | MEDLINE | ID: mdl-12672427

ABSTRACT

In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).


Subject(s)
Astronomy/classification , Astronomy/methods , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...