Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114308, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38829740

ABSTRACT

Dendritic cell (DC) progenitors adapt their transcriptional program during development, generating different subsets. How chromatin modifications modulate these processes is unclear. Here, we investigate the impact of histone deacetylation on DCs by genetically deleting histone deacetylase 1 (HDAC1) or HDAC2 in hematopoietic progenitors and CD11c-expressing cells. While HDAC2 is not critical for DC development, HDAC1 deletion impairs pro-pDC and mature pDC generation and affects ESAM+cDC2 differentiation from tDCs and pre-cDC2s, whereas cDC1s are unchanged. HDAC1 knockdown in human hematopoietic cells also impairs cDC2 development, highlighting its crucial role across species. Multi-omics analyses reveal that HDAC1 controls expression, chromatin accessibility, and histone acetylation of the transcription factors IRF4, IRF8, and SPIB required for efficient development of cDC2 subsets. Without HDAC1, DCs switch immunologically, enhancing tumor surveillance through increased cDC1 maturation and interleukin-12 production, driving T helper 1-mediated immunity and CD8+ T cell recruitment. Our study reveals the importance of histone acetylation in DC development and anti-tumor immunity, suggesting DC-targeted therapeutic strategies for immuno-oncology.


Subject(s)
Cell Differentiation , Dendritic Cells , Histone Deacetylase 1 , Dendritic Cells/metabolism , Dendritic Cells/immunology , Histone Deacetylase 1/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Acetylation , Neoplasms/immunology , Neoplasms/pathology , Histones/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Histone Deacetylase 2/metabolism , Interleukin-12/metabolism
2.
EMBO Mol Med ; 13(4): e12409, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33724710

ABSTRACT

Toll-like receptor (TLR) stimulation induces innate immune responses involved in many inflammatory disorders including psoriasis. Although activation of the AP-1 transcription factor complex is common in TLR signaling, the specific involvement and induced targets remain poorly understood. Here, we investigated the role of c-Jun/AP-1 protein in skin inflammation following TLR7 activation using human psoriatic skin, dendritic cells (DC), and genetically engineered mouse models. We show that c-Jun regulates CCL2 production in DCs leading to impaired recruitment of plasmacytoid DCs to inflamed skin after treatment with the TLR7/8 agonist Imiquimod. Furthermore, deletion of c-Jun in DCs or chemical blockade of JNK/c-Jun signaling ameliorates psoriasis-like skin inflammation by reducing IL-23 production in DCs. Importantly, the control of IL-23 and CCL2 by c-Jun is most pronounced in murine type-2 DCs. CCL2 and IL-23 expression co-localize with c-Jun in type-2/inflammatory DCs in human psoriatic skin and JNK-AP-1 inhibition reduces the expression of these targets in TLR7/8-stimulated human DCs. Therefore, c-Jun/AP-1 is a central driver of TLR7-induced immune responses by DCs and JNK/c-Jun a potential therapeutic target in psoriasis.


Subject(s)
Dendritic Cells , Transcription Factor AP-1 , Animals , Imiquimod , Inflammation , Interleukin-23 , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...