Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Insect Sci ; 30: 59-66, 2018 12.
Article in English | MEDLINE | ID: mdl-30553486

ABSTRACT

The steady improvement in the performance of computing systems seen for many decades is levelling off as the miniaturization of semiconducting technology approaches the atomic limit, facing severe physical and technological issues. Neuromorphic computing is an emerging solution which makes use of silicon technology in a different way, inline with the computational principles observed in animal nervous systems. In this article, we argue that the nervous systems of insects in particular offer themselves as an ideal starting point for incorporation into realistic neuromorphic systems and review research in developing insect-inspired neuromorphic systems. We conclude with an exciting yet tangible vision of a full neuromorphic sensory-motor system where a liquid state machine modelling the function of the insect mushroom body links input to output and allows for amalgamation of the work discussed in a hierarchical framework of a full system inspired by the concept of how information flows through insects.


Subject(s)
Artificial Intelligence , Computing Methodologies , Insecta/physiology , Microtechnology/methods , Neural Networks, Computer , Animals , Microtechnology/instrumentation , Nervous System Physiological Phenomena
4.
Front Neurosci ; 10: 474, 2016.
Article in English | MEDLINE | ID: mdl-27857680

ABSTRACT

In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (<1µs) enables real-time spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications. Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural network (nW range) may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM) as easy to program and low energy (<75 pJ) synapses. Synaptic weights are modulated through the application of an online learning strategy inspired by biological Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

5.
Opt Express ; 20(13): 13612-21, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22714426

ABSTRACT

We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si(3)N(4) layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.µm(-1)), in good agreement with predictions using ellipsometric optical constants of Cu.


Subject(s)
Copper/chemistry , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transistors, Electronic , Energy Transfer , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
6.
Chemphyschem ; 10(6): 963-71, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19263452

ABSTRACT

The missing link: Ferrocene and porphyrin monolayers are tethered on silicon surfaces with short (see picture, left) or long (right) linkers. Electron transfer to the silicon substrate is faster for monolayers with a short linker.Ferrocene and porphyrin derivatives are anchored on Si(100) surfaces through either a short two-carbon or a long 11-carbon linker. The two tether lengths are obtained by using two different grafting procedures: a single-step hydrosilylation is used for the short linker, whereas for the long linker a multistep process involving a 1,3-dipolar cycloaddition is conducted, which affords ferrocene-triazole-(CH(2))(11)-Si or Zn(porphyrin)-triazole-(CH(2))(11)-Si links to the surface. The modified surfaces are characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Cyclic voltammetry experiments show that the redox activity of the tethered ferrocene or porphyrin is maintained for both linker types. Microelectrode capacitor devices incorporating these modified Si(100) surfaces are designed, and their capacitance-voltage (C-V) and conductance-voltage (G-V) profiles are investigated. Capacitance and conductance peaks are observed, which indicates efficient charge transfer between the redox-active monolayers and the electrode surface. Slower electron transfer between the ferrocene or porphyrin monolayer and the electrode surface is observed for the longer linker, which suggests that by adjusting the linker length, the electrical properties of the device, such as charging and discharging kinetics and retention time, could be tuned.


Subject(s)
Ferrous Compounds/chemistry , Porphyrins/chemistry , Silicon/chemistry , Electric Capacitance , Electron Transport , Metallocenes , Microelectrodes , Oxidation-Reduction , Potentiometry , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...