Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(23): e202300613, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37357147

ABSTRACT

Unspecific peroxygenases have attracted interest in synthetic chemistry, especially for the oxidative activation of C-H bonds, as they only require hydrogen peroxide (H2 O2 ) instead of a cofactor. Due to their instability in even small amounts of H2 O2 , different strategies like enzyme immobilization or in situ H2 O2 production have been developed to improve the stability of these enzymes. While most strategies have been studied separately, a combination of photocatalysis with immobilized enzymes was only recently reported. To show the advantages and limiting factors of immobilized enzyme in a photobiocatalytic reaction, a comparison is made between free and immobilized enzymes. Adjustment of critical parameters such as (i) enzyme and substrate concentration, (ii) illumination wavelength and (iii) light intensity results in significantly increased enzyme stabilities of the immobilized variant. Moreover, under optimized conditions a turnover number of 334,500 was reached.


Subject(s)
Enzymes, Immobilized , Mixed Function Oxygenases , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Oxidation-Reduction , Biocatalysis
2.
Front Chem ; 10: 985997, 2022.
Article in English | MEDLINE | ID: mdl-36110138

ABSTRACT

Unspecific peroxygenases (UPOs) are among the most studied enzymes in the last decade and their well-deserved fame owes to the enzyme's ability of catalyzing the regio- and stereospecific hydroxylation of non-activated C-H bonds at the only expense of H2O2. This leads to more direct routes for the synthesis of different chiral compounds as well as to easier oxyfunctionalization of complex molecules. Unfortunately, due to the high sensitivity towards the process conditions, UPOs' application at industrial level has been hampered until now. However, this challenge can be overcome by enzyme immobilization, a valid strategy that has been proven to give several benefits. Within this article, we present three different immobilization procedures suitable for UPOs and two of them led to very promising results. The immobilized enzyme, indeed, shows longer stability and increased robustness to reaction conditions. The immobilized enzyme half-life time is 15-fold higher than for the free AaeUPO PaDa-I and no enzyme deactivation occurred when incubated in organic media for 120 h. Moreover, AaeUPO PaDa-I is proved to be recycled and reused up to 7 times when immobilized.

3.
Angew Chem Int Ed Engl ; 61(40): e202207971, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35921249

ABSTRACT

Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.


Subject(s)
Cyanobacteria , Electrons , Biocatalysis , Cyanobacteria/metabolism , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Water/metabolism
4.
Angew Chem Weinheim Bergstr Ger ; 134(40): e202207971, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-38505002

ABSTRACT

Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.

SELECTION OF CITATIONS
SEARCH DETAIL
...