Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Microbiol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009690

ABSTRACT

Gut bacteria are linked to neurodegenerative diseases but the risk factors beyond microbiota composition are limited. Here we used a pre-clinical model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), to identify microbial risk factors. Mice with different genotypes and complex microbiotas or six combinations of a synthetic human microbiota were analysed, resulting in varying probabilities of severe neuroinflammation. However, the presence or relative abundances of suspected microbial risk factors failed to predict disease severity. Akkermansia muciniphila, often associated with MS, exhibited variable associations with EAE severity depending on the background microbiota. Significant inter-individual disease course variations were observed among mice harbouring the same microbiota. Evaluation of microbial functional characteristics and host immune responses demonstrated that the immunoglobulin A coating index of certain bacteria before disease onset is a robust individualized predictor of disease development. Our study highlights the need to consider microbial community networks and host-specific bidirectional interactions when aiming to predict severity of neuroinflammation.

2.
Cell Host Microbe ; 32(4): 527-542.e9, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38513656

ABSTRACT

Inflammatory bowel diseases (IBDs) are chronic conditions characterized by periods of spontaneous intestinal inflammation and are increasing in industrialized populations. Combined with host genetics, diet and gut bacteria are thought to contribute prominently to IBDs, but mechanisms are still emerging. In mice lacking the IBD-associated cytokine, interleukin-10, we show that a fiber-deprived gut microbiota promotes the deterioration of colonic mucus, leading to lethal colitis. Inflammation starts with the expansion of natural killer cells and altered immunoglobulin-A coating of some bacteria. Lethal colitis is then driven by Th1 immune responses to increased activities of mucin-degrading bacteria that cause inflammation first in regions with thinner mucus. A fiber-free exclusive enteral nutrition diet also induces mucus erosion but inhibits inflammation by simultaneously increasing an anti-inflammatory bacterial metabolite, isobutyrate. Our findings underscore the importance of focusing on microbial functions-not taxa-contributing to IBDs and that some diet-mediated functions can oppose those that promote disease.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Microbiota , Mice , Animals , Inflammatory Bowel Diseases/microbiology , Colitis/microbiology , Inflammation , Diet , Genetic Predisposition to Disease , Bacteria
3.
Nat Microbiol ; 8(10): 1863-1879, 2023 10.
Article in English | MEDLINE | ID: mdl-37696941

ABSTRACT

Alterations in the gut microbiome, including diet-driven changes, are linked to the rising prevalence of food allergy. However, little is known about how specific gut bacteria trigger the breakdown of oral tolerance. Here we show that depriving specific-pathogen-free mice of dietary fibre leads to a gut microbiota signature with increases in the mucin-degrading bacterium Akkermansia muciniphila. This signature is associated with intestinal barrier dysfunction, increased expression of type 1 and 2 cytokines and IgE-coated commensals in the colon, which result in an exacerbated allergic reaction to food allergens, ovalbumin and peanut. To demonstrate the causal role of A. muciniphila, we employed a tractable synthetic human gut microbiota in gnotobiotic mice. The presence of A. muciniphila within the microbiota, combined with fibre deprivation, resulted in stronger anti-commensal IgE coating and innate type-2 immune responses, which worsened symptoms of food allergy. Our study provides important insights into how gut microbes can regulate immune pathways of food allergy in a diet-dependent manner.


Subject(s)
Food Hypersensitivity , Verrucomicrobia , Humans , Mice , Animals , Verrucomicrobia/metabolism , Food Hypersensitivity/microbiology , Akkermansia , Immunoglobulin E/metabolism
4.
Res Sq ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993463

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic condition characterized by periods of spontaneous intestinal inflammation and is increasing in industrialized populations. Combined with host genetic predisposition, diet and gut bacteria are thought to be prominent features contributing to IBD, but little is known about the precise mechanisms involved. Here, we show that low dietary fiber promotes bacterial erosion of protective colonic mucus, leading to lethal colitis in mice lacking the IBD-associated cytokine, interleukin-10. Diet-induced inflammation is driven by mucin-degrading bacteria-mediated Th1 immune responses and is preceded by expansion of natural killer T cells and reduced immunoglobulin A coating of some bacteria. Surprisingly, an exclusive enteral nutrition diet, also lacking dietary fiber, reduced disease by increasing bacterial production of isobutyrate, which is dependent on the presence of a specific bacterial species, Eubacterium rectale. Our results illuminate a mechanistic framework using gnotobiotic mice to unravel the complex web of diet, host and microbial factors that influence IBD.

5.
STAR Protoc ; 2(2): 100607, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34179836

ABSTRACT

Reproducible in vivo models are necessary to address functional aspects of the gut microbiome in various diseases. Here, we present a gnotobiotic mouse model that allows for the investigation of specific microbial functions within the microbiome. We describe how to culture 14 different well-characterized human gut species and how to verify their proper colonization in germ-free mice. This protocol can be modified to add or remove certain species of interest to investigate microbial mechanistic details in various disease models. For complete details on the use and execution of this protocol, please refer to Desai et al. (2016).


Subject(s)
Gastrointestinal Microbiome , Host-Pathogen Interactions , Animals , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Germ-Free Life , Humans , Mice , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...