Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21464, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034784

ABSTRACT

There is growing recognition of the impact of the rising presence of microplastics (MPs) on terrestrial plant growth and, in general, the terrestrial ecosystem. Simultaneously, there is growing heavy metal accumulation in agricultural lands at an astonishing rate owing to the overwhelming use of chemical fertilizers, herbicides, and weedicides. Thus, there is a need to investigate the synergetic effect of MPs along with heavy metals on the inducing combined toxicity. This study investigates effects at smaller exposure periods of a few hours using a novel optical imaging technique, Biospeckle Coherence Tomography. Biospeckle Optical Coherence Tomography (bOCT) is a novel optical imaging technique that we successfully demonstrated earlier in visualizing the internal activity of plants. Previous studies of authors using the bOCT technique have demonstrated its potential in the independent application of polyethylene microplastic (PEMPs) as well as zinc within 6 h after their treatments. The strong inhibitory effect of 100 mg L-1, Zn, and PEMPs alone on the germination of Lens culinaris could be visualized with bOCT. The current study demonstrated that against expectation, combined effects of Zn toxicity were reduced when combined with MPs. This is suggested due to the significant reduction of Zn uptake by the seedlings through the interaction of Zn and MPs in an aqueous solution. Mass-spectrometry results also indicate a reduced intake of Zn. Our findings suggest that PEMPs could be able to reduce the over-availability of Zn, thus mitigating the Zn toxicity on lentils.

2.
Chemosphere ; 303(Pt 2): 135162, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35654234

ABSTRACT

Widespread use of plastics and mishandling has resulted in severe environmental issues affecting seed germination and seedling growth. This study investigates the effect of polyethylene microplastics (740-4990 nm PEMPs) on lentil (Lens culinaris) seed germination and seedling growth using Biospeckle Optical Coherence Tomography (bOCT), a technique that we successfully demonstrated earlier in visualizing the internal activity of plants. Lentil seeds were exposed to PEMPs bioassay for seven days with 10, 50, and 100 mg L-1 concentrations. The average speckle contrast was calculated after 0 h, 6 h, 12 h, and 24 h of exposure, and statistically significant differences were observed just after 6 h of exposure under all the treatments. However, with conventional parameters, germination viability, germination rate, root and shoot lengths, fresh and dry seedling weights, and antioxidative enzymes, no significant effect was observed until 2 d of exposure. The results revealed that the presence of PEMPs significantly reduced the internal activity at the initial stages that could be visualized only by the use of bOCT, which has never been observed till now. Our results demonstrated for the first time the effect that microplastics indeed could hinder the internal activity during germination of the seeds, possibly resulting from the physical blockage of pores leading to stunted growth at later stages.


Subject(s)
Germination , Lens Plant , Microplastics , Plastics/pharmacology , Seedlings , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...