Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1144066, 2023.
Article in English | MEDLINE | ID: mdl-36969554

ABSTRACT

Introduction: AnkG, encoded by the ANK3 gene, is a multifunctional scaffold protein with complex isoform expression: the 480 and 270 kDa isoforms have roles at the axon initial segment and node of Ranvier, whereas the 190 kDa isoform (AnkG-190) has an emerging role in the dendritic shaft and spine heads. All isoforms of AnkG undergo palmitoylation, a post-translational modification regulating protein attachment to lipid membranes. However, palmitoylation of AnkG-190 has not been investigated in dendritic spines. The ANK3 gene and altered expression of AnkG proteins are associated with a variety of neuropsychiatric and neurodevelopmental disorders including bipolar disorder and are implicated in the lithium response, a commonly used mood stabilizer for bipolar disorder patients, although the precise mechanisms involved are unknown. Result: Here, we showed that Cys70 palmitoylation stabilizes the localization of AnkG-190 in spine heads and at dendritic plasma membrane nanodomains. Mutation of Cys70 impairs AnkG-190 function in dendritic spines and alters PSD-95 scaffolding. Interestingly, we find that lithium reduces AnkG-190 palmitoylation thereby increasing its mobility in dendritic spines. Finally, we demonstrate that the palmitoyl acyl transferase ZDHHC8, but not ZDHHC5, increases AnkG-190 stability in spine heads and is inhibited by lithium. Discussion: Together, our data reveal that palmitoylation is critical for AnkG-190 localization and function and a potential ZDHHC8/AnkG-190 mechanism linking AnkG-190 mobility to the neuronal effects of lithium.

2.
J Neurotrauma ; 37(10): 1204-1210, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31847698

ABSTRACT

Variability in recovery among concussed athletes can be attributed to several risk factors. One risk factor not definitively explored is genetic variation. Genetic variations such as variable number tandem repeats (VNTR) in the promotor region are normal in the population, and can lead to disparities in the amount of protein produced, which could be associated with neuronal recovery. Little research has been conducted to investigate promoter VNTRs within genes responsible for recovery following a concussion. The authors implemented a prospective cohort design using a standardized concussion protocol to diagnose and follow 93 athletes to full recovery at three different sites to determine the association between promotor GT(n) VNTR polymorphisms and recovery time within concussed athletes. The GT(n) VNTR within the promoter region of glutamate ionotropic receptor N-methyl-d-aspartate (NMDA) type subunit 2A (GRIN2A), potassium voltage-gated channel subfamily H member 2 (KCNH2), glutamate ionotropic receptor kainate type subunit 1 (GRIK1), and neurofilament light (NEFL) were genotyped using capillary electrophoresis. GT(n) VNTR promotor polymorphisms were dichotomized into long (L) and short (s) alleles. Using adjusted negative binomial regression models we found that athletes carrying the LL GRIN2A GT(n) VNTR within the promoter region were more likely to experience a prolonged concussion recovery, which resulted in their not being able to return to play for ∼60 days. Additionally, there was a trend toward significance, in which the ss NEFL GT(n) Caucasian athletes had prolonged concussion recovery. This could presumably be attributed to altered proteins or protein levels that disrupt neuronal recovery. This pilot study suggests that these VNTRs are associated with prolonged concussion recovery. In future studies, we plan to measure the extent to which the L or s alleles alter the level and the activity of the GluNR2a and NEFL proteins that GRIN2A and NEFL produce, respectively.


Subject(s)
Brain Concussion/diagnosis , Brain Concussion/genetics , Minisatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Recovery of Function/physiology , Adolescent , Brain Concussion/physiopathology , Female , Humans , Male , Neurofilament Proteins/genetics , Pilot Projects , Promoter Regions, Genetic/genetics , Young Adult
3.
Front Cell Neurosci ; 13: 115, 2019.
Article in English | MEDLINE | ID: mdl-31001086

ABSTRACT

The mechanistic target of rapamycin (mTOR) Complex 1 (mTORC1) controls growth and proliferation of non-neuronal cells, while during neuronal development mTORC1 responds to glutamate and neurotrophins to promote neuronal migration and dendritic arborization. Recent studies reveal that mTORC1 signaling complexes are assembled on lysosomal membranes, but how mTORC1 membrane targeting is regulated is not fully clear. Our examination of palmitoyl-proteomic databases and additional bioinformatic analyses revealed that several mTORC1 proteins are predicted to undergo covalent modification with the lipid palmitate. This process, palmitoylation, can dynamically target proteins to specific membranes but its roles in mTORC1 signaling are not well described. Strikingly, we found that acute pharmacological inhibition of palmitoylation prevents amino acid-dependent mTORC1 activation in HEK293T cells and brain-derived neurotrophic factor (BDNF)-dependent mTORC1 activation in hippocampal neurons. We sought to define the molecular basis for this finding and found that the mTORC1 proteins LAMTOR1 and mTOR itself are directly palmitoylated, while several other mTORC1 proteins are not palmitoylated, despite strong bioinformatic prediction. Interestingly, palmitoylation of LAMTOR1, whose anchoring on lysosomal membranes is important for mTORC1 signaling, was rapidly increased prior to mTORC1 activation. In contrast, mTOR palmitoylation was decreased by stimuli that activate mTORC1. These findings reveal that specific key components of the mTOR pathway are dynamically palmitoylated, suggesting that palmitoylation is not merely permissive for mTOR activation but is instead actively involved in mTORC1-dependent signaling.

4.
Alcohol Clin Exp Res ; 41(10): 1715-1724, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28800142

ABSTRACT

BACKGROUND: Heavy and chronic ethanol (EtOH) exposure can cause significant structural and functional damage to the adult brain. The most devastating consequence of EtOH exposure is the neurotoxicity associated with the depletion of neurons. Regulation of splice variants in the brain can modulate protein functions, which may ultimately affect behaviors associated with alcohol dependence and EtOH-mediated neurotoxicity. As alcohol consumption is associated with neurotoxicity, it is possible that altered splicing of survival and pro-survival factors during the development of alcoholism may contribute to the neurotoxicity. METHODS: Primary human neurons and a neuroblastoma cell line were exposed to different concentrations of EtOH for various time periods. Cell viability and neuronal marker expression were analyzed by MTT assay and immunoblotting, respectively. Effect of EtOH exposure on splicing regulatory protein expression and alternative splicing of candidate genes was analyzed by a biochemical approach. Transcriptional activity of serine/arginine-rich splicing factor 1 (SRSF1) gene was determined by reporter gene analysis. RESULTS: Our results suggest that EtOH exposure to neuronal cells at 25 mM and higher concentrations are detrimental. In addition, EtOH exposure caused a dramatic reduction in SRSF1 expression levels. Furthermore, EtOH exposure led to pre-mRNA missplicing of Mcl-1, a pro-survival member of the Bcl-2 family, by down-regulating the expression levels of SRSF1. Moreover, ectopic expression of both SRSF1 and Mcl-1L isoform was able to recover EtOH-mediated neurotoxicity. CONCLUSIONS: Our results suggest that EtOH exposure can lead to pre-mRNA missplicing of Mcl-1 in neuronal cells. Our results indicate that EtOH exposure of neurons leads to a decrease in the ratio of Mcl-1L/Mcl-1S by favoring pro-apoptotic Mcl-1S splicing over anti-apoptotic Mcl-1L isoform suggesting that Mcl-1S may play a crucial role in neurotoxicity associated with alcohol consumption.


Subject(s)
Alternative Splicing/physiology , Ethanol/toxicity , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Neurons/physiology , RNA Precursors/genetics , Alternative Splicing/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Neurons/drug effects , RNA Precursors/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...