Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 14(1): e077129, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38216192

ABSTRACT

OBJECTIVE: This study aims to calculate the global warming potential, in carbon dioxide (CO2) equivalent emissions, from all in-scope activities involved in a phase-1 clinical study. DESIGN: Retrospective analysis. DATA SOURCE: Internal data held by Janssen Pharmaceuticals. STUDIES INCLUDED: Janssen-sponsored TMC114FD1HTX1002 study conducted between 2019 and 2021. MAIN OUTCOME: Measure CO2 equivalents (CO2e) for in-scope clinical trial activities calculated according to intergovernmental panel on climate change 2021 impact assessment methodology. RESULTS: The CO2e emissions generated by the trial were 17.65 tonnes. This is equivalent to the emissions generated by driving an average petrol-fueled family car 71 004 km or roughly 1.8 times around the circumference of the Earth. Commuting to the clinical site by the study participants generated the most emissions (5419 kg, 31% of overall emissions), followed by trial site utilities (2725 kg, 16% of overall emissions) and site staff travel (2560 kg, 15% of overall emissions). In total, the movement of people (participant travel, site staff travel and trial site staff travel) accounted for 8914 kg or 51% of overall trial emissions. CONCLUSIONS: Decentralised trial models which seek to bring clinical trial operations closer to the participant offer opportunities to reduce participant travel. The electrification of sponsor vehicle fleets and society's transition towards electric vehicles may result in further reductions. TRIAL REGISTRATION NUMBER: NCT04208061.


Subject(s)
Carbon Footprint , Transportation , Humans , Retrospective Studies , Travel , Carbon Dioxide/analysis
2.
Sci Total Environ ; 893: 164780, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37302605

ABSTRACT

The growing production of pharmaceuticals and nutraceuticals, e.g., methylcobalamin supplements, improves the health of people. This study assesses the environmental footprint of chewable methylcobalamin supplements in four packaging types: blister packs or bottles made of HDPE, PET, or glass. A cradle-to-grave life cycle assessment is conducted to evaluate the supply to Belgian consumers of the recommended daily dose of methylcobalamin supplementation (1.2 mg) in case of deficiency. The impact of methylcobalamin manufacturing in major producing countries (China as baseline and France) is analyzed based on detailed synthesis modeling of data points coming from patents. The overall carbon footprint (CF) is dominated by the transport of consumers to the pharmacy and methylcobalamin powder manufacturing in China (while its mass share per supplement is only 1 %). The impact is the lowest for supplements in HDPE bottles (6.3 g CO2 eq) and 1 %, 8 %, and 35 % higher for those in PET bottles, glass bottles, and blister packs, respectively. Tablets in blister packs have for other investigated impact categories (fossil resource footprint (FRF); acidification; eutrophication: freshwater, marine, and terrestrial; freshwater ecotoxicity; land use; and water use) the highest footprint and those in HDPE and PET bottles for most the lowest. The CF of methylcobalamin powder manufacturing in France is 22 % lower than in China (2.7 g CO2 eq), while the FRF is similar in both locations (26-27 kJ). The FRF and the difference in the CF are chiefly due to energy use and solvent production emissions. Similar trends as the CF are found for other investigated impact categories. Valuable conclusions are drawn for environmental studies on pharmaceuticals and nutraceuticals: (i) including accurate data on consumer transport, (ii) using more environmentally-friendly active ingredients, (iii) choosing appropriate packaging types considering multiple aspects: convenience, environmental footprint, etc., and (iv) providing a holistic picture through assessing various impact categories.


Subject(s)
Carbon Dioxide , Polyethylene , Humans , Animals , Powders , Carbon Footprint , Dietary Supplements , Life Cycle Stages
3.
Environ Res ; 144(Pt A): 19-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26544901

ABSTRACT

The effects of a pharmaceutical treatment have until now been evaluated by the field of Health Economics on the patient health benefits, expressed in Quality-Adjusted Life Years (QALYs) versus the monetary costs. However, there is also a Human Health burden associated with this process, resulting from emissions that originate from the pharmaceutical production processes, Use Phase and End of Life (EoL) disposal of the medicine. This Human Health burden is evaluated by the research field of Life Cycle Assessment (LCA) and expressed in Disability-Adjusted Life Years (DALYs), a metric similar to the QALY. The need for a new framework presents itself in which both the positive and negative health effects of a pharmaceutical treatment are integrated into a net Human Health effect. To do so, this article reviews the methodologies of both Health Economics and the area of protection Human Health of the LCA methodology and proposes a conceptual framework on which to base an integration of both health effects. Methodological issues such as the inclusion of future costs and benefits, discounting and age weighting are discussed. It is suggested to use the structure of an LCA as a backbone to cover all methodological challenges involved in the integration. The possibility of monetizing both Human Health benefits and burdens is explored. The suggested approach covers the main methodological aspects that should be considered in an integrated assessment of the health effects of a pharmaceutical treatment.


Subject(s)
Drug Therapy , Cost-Benefit Analysis , Drug Therapy/economics , Environment , Humans
4.
Waste Manag ; 46: 653-67, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26384560

ABSTRACT

Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it is constrained by limited information available about the composition of flows in the system as well as about secondary production processes and their interaction with primary or traditional production chains. In the exergetic LCA, resource quality could be reflected by the savings achieved by product substitution and the consideration of the waste's upstream burden allowed for an evaluation of the waste's resource potential. For a comprehensive assessment of resource efficiency in waste LCA, the sensitivity of accounting for product substitution should be carefully analyzed and cumulative exergy consumption measures should be complimented by other impact categories.


Subject(s)
Recycling/methods , Solid Waste/analysis , Waste Management/methods , Refuse Disposal , Thermodynamics
5.
Environ Sci Technol ; 48(20): 12247-55, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25244162

ABSTRACT

The pharmaceutical and fine chemical industries are eager to strive toward innovative products and technologies. This study first derives hotspots in resource consumption of 2839 Basic Operations in 40 Active Pharmaceutical Ingredient synthesis steps through Exergetic Life Cycle Assessment (ELCA). Second, since companies are increasingly obliged to quantify the environmental sustainability of their products, two alternative ways of simplifying (E)LCA are discussed. The usage of averaged product group values (R(2) = 3.40 × 10(-30)) is compared with multiple linear regression models (R(2) = 8.66 × 10(-01)) in order to estimate resource consumption of synthesis steps. An optimal set of predictor variables is postulated to balance model complexity and embedded information with usability and capability of merging models with existing Enterprise Resource Planning (ERP) data systems. The amount of organic solvents used, molar efficiency, and duration of a synthesis step were shown to be the most significant predictor variables. Including additional predictor variables did not contribute to the predictive power and eventually weakens the model interpretation. Ideally, an organization should be able to derive its environmental impact from readily available ERP data, linking supply chains back to the cradle of resource extraction, excluding the need for an approximation with product group averages.


Subject(s)
Environment , Pharmaceutical Preparations , Drug Industry , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...