Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 59: 42-52, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25017240

ABSTRACT

Honeybee stings are a severe public health problem. Bee venom contains a series of active components, including enzymes, peptides, and biogenic amines. The local reactions observed after envenoming include a typical inflammatory response and pain. Honeybee venom contains some well-known polycationic peptides, such as Melittin, Apamin, MCD peptide, Cardiopep, and Tertiapin. Secapin in honeybee venom was described 38 years ago, yet almost nothing is known about its action. A novel, variant form of this peptide was isolated from the venom of Africanized honeybees (Apis mellifera). This novel peptide, named Secapin-2, is 25 amino acid residues long. Conformational analyses using circular dichroism and molecular dynamics simulations revealed a secondary structure rich in strands and turns, stabilized by an intramolecular disulfide bridge. Biological assays indicated that Secapin-2 did not induce hemolysis, mast cell degranulation or chemotactic activities. However, Secapin-2 caused potent dose-related hyperalgesic and edematogenic responses in experimental animals. To evaluate the roles of prostanoids and lipid mediators in the hyperalgesia and edema induced by this peptide, Indomethacin and Zileuton were used to inhibit the cyclooxygenase and lipoxygenase pathways, respectively. The results showed that Zileuton partially blocked the hyperalgesia induced by Secapin-2 and decreased the edematogenic response. In contrast, Indomethacin did not interfere with these phenomena. Zafirlukast, a leukotriene receptor antagonist, blocked the Secapin-2 induced hyperalgesia and edematogenic response. These results indicate that Secapin-2 induces inflammation and pain through the lipoxygenase pathway in both phenomena.


Subject(s)
Bee Venoms/chemistry , Edema/chemically induced , Hyperalgesia/chemically induced , Animals , Bee Venoms/isolation & purification , Bee Venoms/pharmacology , Bees , Dose-Response Relationship, Drug , Edema/metabolism , Hyperalgesia/metabolism , Male , Mice
2.
Amino Acids ; 40(1): 101-11, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20177946

ABSTRACT

Stings by bees and wasps, including Brazilian species, are a severe public health problem. The local reactions observed after the envenoming includes typical inflammatory response and pain. Several studies have been performed to identify the substances, including peptides that are responsible for such phenomena. The aim of the present study is to characterize the possible nociceptive (hyperalgesic) and edematogenic effects of some peptides isolated from the venoms of the honeybee (Apis mellifera) and the social wasps Polybia paulista and Protonectarina sylveirae, in addition to characterize some of the mechanisms involved in these phenomena. For this purpose, different doses of the peptides mellitin (Apis mellifera), Polybia-MP-I, N-2-Polybia-MP-I (Polybia paulista), Protonectarina-MP-NH2 and Protonectarina-MP-OH (Protonectarina sylveirae) were injected into the hind paw of mice. Hyperalgesia and edema were determined after peptide application, by using an electronic von Frey apparatus and a paquimeter. Carrageenin and saline were used as controls. Results showed that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH(2) and Protonectarina-MP-OH peptides produced a dose- and time-related hyperalgesic and edematogenic responses. Both phenomena are detected 2 h after melittin, Polybia-MP-I, N-2-Polybia-MP-I injection; their effects lasted until 8 h. In order to evaluate the role of prostanoids and the involvement of lipidic mediators in hyperalgesia induced by the peptides, indomethacin and zileuton were used. Results showed that zileuton blocked peptide-induced hyperalgesia and induced a decrease of the edematogenic response. On the other hand, indomethacin did not interfere with these phenomena. These results indicate that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH(2), and Protonectarina-MP-OH peptides could contribute to inflammation and pain induced by insect venoms.


Subject(s)
Bee Venoms/adverse effects , Bees/chemistry , Bites and Stings/chemically induced , Edema/chemically induced , Hyperalgesia/chemically induced , Wasp Venoms/adverse effects , Animals , Bee Venoms/immunology , Bee Venoms/isolation & purification , Bites and Stings/immunology , Edema/immunology , Humans , Hyperalgesia/immunology , Male , Mice , Pain/chemically induced , Pain/immunology , Wasp Venoms/immunology , Wasp Venoms/isolation & purification , Wasps/chemistry
3.
J Pept Res ; 64(3): 95-103, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15317499

ABSTRACT

Eumenine mastoparan-AF (EMP-AF) is a novel membrane active tetradecapeptide recently isolated from the venom of solitary wasp, Anterhynchium flavomarginatum micado. It was reported previously that EMP-AF peptide presented low cytolytic activities in human erythrocytes and in RBL-2H3 mast cells. In the present work, we observed that this peptide is able to permeate anionic liposomes, and in less extension also the neutral ones. We present evidences showing that the permeation ability is well correlated with the amount of helical conformation assumed by the peptides in these environments. This peptide also showed a broad-spectrum inhibitory activity against Gram-positive and Gram-negative bacteria. The permeability of liposomes and the antibiotic effect showed a significant reduction when C-terminus was deamidated (in acidic form). The removal of the three first amino acid residues from the N-terminus rendered the peptide inactive both in liposomes and in bacteria. The results suggest that the mechanism of action involves a threshold in the accumulation of the peptide at level of cell membrane.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Insect Proteins/chemistry , Insect Proteins/pharmacology , Wasp Venoms/chemistry , Wasp Venoms/pharmacology , Amino Acid Sequence , Animals , Cell Membrane Permeability/drug effects , Circular Dichroism , Humans , In Vitro Techniques , Insect Proteins/genetics , Liposomes , Microbial Sensitivity Tests , Molecular Sequence Data , Protein Conformation , Wasp Venoms/genetics , Wasps/chemistry , Wasps/genetics
4.
Br J Pharmacol ; 97(4): 1119-24, 1989 Aug.
Article in English | MEDLINE | ID: mdl-2790378

ABSTRACT

1. The role of nitric oxide (NO) in the regulation of the vascular tone of the coronary circulation of the Langendorff-perfused rabbit heart was investigated. 2. NG-monomethyl-L-arginine (L-NMMA; 10-100 microM), a specific inhibitor of NO formation from L-arginine (L-Arg), but not its D-enantiomer (D-NMMA; 100 microM) produced a dose-related, sustained increase in the coronary perfusion pressure (CPP). In addition, L-NMMA inhibited the vasodilator responses of acetylcholine (ACh), unmasking in some instances its direct vasoconstrictor effect. These effects of L-NMMA were attenuated by L-Arg. 3. L-NMMA (10 and 30 microM), but not D-NMMA (30 microM), caused a long-lasting inhibition of NO formation which was reversed by L-Arg (30 and 100 microM), but not by D-Arg (100 microM). 4. This study indicates that the formation of NO from L-Arg in the coronary circulation of the rabbit plays a role both as a regulator of vascular tone and as a mediator of the vasodilatation induced by ACh.


Subject(s)
Arginine/metabolism , Coronary Circulation/drug effects , Muscle, Smooth, Vascular/physiology , Nitric Oxide/pharmacology , Acetylcholine/pharmacology , Animals , Arginine/pharmacology , Heart/drug effects , In Vitro Techniques , Luminescent Measurements , Male , Muscle Relaxation/drug effects , Muscle, Smooth, Vascular/drug effects , Rabbits , Superoxide Dismutase/pharmacology , omega-N-Methylarginine
SELECTION OF CITATIONS
SEARCH DETAIL
...