Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Photochem Photobiol Sci ; 23(7): 1373-1392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733516

ABSTRACT

Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.


Subject(s)
Biodiversity , Brazil , Animals , Luminescence , Dinoflagellida , Fireflies , Cnidaria , Ecosystem
2.
Neuroscience ; 551: 153-165, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821242

ABSTRACT

The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.

3.
J Nutr Biochem ; 129: 109639, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583498

ABSTRACT

This study aimed to investigate whether modifying the pre-gestational lipid content could mitigate metabolic damage in offspring from dams exposed to a high-fat (HF) diet before conception and during pregnancy and lactation, with a focus on sex-specific outcomes. Specific effects of maternal normolipidic diets on offspring were also assessed. Female Wistar rats received control (C) or HF diets before conception. During pregnancy and lactation, females were distributed in five groups: C-C, HF-HF, HF-C, HF-saturated (HF-S) or HF-polyunsaturated n-3 group (HF-P). Saturated and PUFA n-3 diets were normolipidic. In 21-day-old offspring, corporal parameters, adiposity, serum metabolites, OGTT, liver phenotype, and miR-34a-5p hepatic expression were determined. Pre-gestational HF diet impaired glycemic response in females, independent of any change in body weight. Female and male offspring from dams continuously exposed to HF diet exhibited hyperglycemia, increased adiposity, and disrupted serum lipid profiles. Male offspring showed increased hepatic fat accumulation and miR-34a-5p expression. Shifting maternal dietary lipid content to normolipidic diets restored offspring's phenotype; however, decreased SIRT1, IRß and IRS1 expression in offspring from dams exposed to HF diet before conception suggested early indicators of glucose metabolism damage. Our findings indicated a pronounced metabolic impact on males. In conclusion, glucose tolerance impairment in females before conception disturbed intrauterine environment, influencing in offspring's phenotype. Modifying maternal dietary lipid content mitigated effects of pre-gestational HF diet exposure on young offspring. Nevertheless, decreased hepatic levels of critical insulin signaling proteins indicated that independently of the maternal diet, pre-existing HF diet-induced glucose intolerance before conception may adversely program the offspring's phenotype.


Subject(s)
Diet, High-Fat , Lactation , Liver , Maternal Nutritional Physiological Phenomena , MicroRNAs , Rats, Wistar , Animals , Female , Pregnancy , Male , Liver/metabolism , MicroRNAs/metabolism , Diet, High-Fat/adverse effects , Prenatal Exposure Delayed Effects , Phenotype , Dietary Fats , Rats , Fatty Acids/metabolism
4.
Arch Toxicol ; 98(6): 1877-1890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494580

ABSTRACT

Cannabis is the most used illicit substance for recreational purposes around the world. However, it has become increasingly common to witness the use of approved cannabis preparations for symptoms management in various diseases. The aim of this study was to investigate the effects of cannabis nano emulsion in the liver of Wistar rats, with different proportions of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). For this, a total of 40 male Wistar rats were distributed into 5 groups, as follows (n = 8 per group): Control: G1, Experimental group (G2): treated with cannabis nano emulsion (THC and CBD) at a dose of 2.5 mg/kg, Experimental group (G3): treated with cannabis nano emulsion (THC and CBD) at a dose of 5 mg/kg, Experimental group (G4): treated with cannabis nano emulsion (CBD) at a dose of 2.5 mg/kg; Experimental group (G5): treated with cannabis nano emulsion (CBD) at a dose of 5 mg/kg. Exposure to the nano emulsion was carried out for 21 days, once a day, orally (gavage). Our results showed that cannabis nano emulsions at higher doses (5 mg/kg), regardless of the composition, induced histopathologic changes in the liver (G3 and G5) in comparison with the control group. In line with that, placental glutathione S-transferase (GST-P) positive foci increased in both G3 and G5 (p < 0.05), as well as the immune expression of Ki-67, vascular endothelial growth factor (VEGF) and p53 (p < 0.05). Also, the nano emulsion intake induced an increase in the number of micronucleated hepatocytes in G5 (p < 0.05) whereas G3 showed an increase in binucleated cells (p < 0.05). As for metanuclear alterations, karyolysis and pyknosis had an increased frequency in G3 (p < 0.05). Taken together, the results show that intake of cannabis nano emulsion may induce degenerative changes and genotoxicity in the liver in higher doses, demonstrating a clear dose-response relationship.


Subject(s)
Cannabidiol , Cannabis , Dose-Response Relationship, Drug , Emulsions , Liver , Rats, Wistar , Animals , Male , Liver/drug effects , Liver/pathology , Liver/metabolism , Cannabidiol/toxicity , Cannabidiol/administration & dosage , Cannabis/chemistry , Dronabinol/toxicity , Dronabinol/administration & dosage , Rats , Nanoparticles/toxicity , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology
6.
Life (Basel) ; 14(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38541661

ABSTRACT

(1) Background: Species of the genus Cymbopogon and its essential oil are known for their antioxidant and hypoglycemic effects. This study aimed to investigate the impact of the essential oil of Cymbopogon flexuosus (EOCF), and its major component, citral, on glycemic, lipid, antioxidant parameters, and oxidative stress in a type 1 diabetes (DM1) rat model. (2) Methods: Initially, EOCF was analyzed by Gas chromatography-mass spectrometry (GC-MS) and the antioxidant activity of EOCF and citral was evaluated. Next, male Wistar rats (3 months old, 200-250 g) induced with DM1 using Streptozotocin (STZ) were divided into four groups: negative control supplemented with an 80% Tween solution, two groups of animals supplemented with EOCF (32 mg/kg and 64 mg/kg) and with citral (32 mg/kg), and treated for 14 days. Measurements of blood glucose levels and body weight were taken; after euthanasia, biochemical markers, including lipid profile, uric acid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), were evaluated. (3) Results: The predominant compounds in EOCF were α-citral (53.21%) and neral (19.42%), constituting 72.63% citral. EOCF showed good antioxidant activity, significantly greater than citral. EOCF supplementation demonstrated a mitigating effect on glycemic, lipid, and hepatic abnormalities induced by DM1. (4) Conclusions: EOCF emerges as a promising therapeutic option for the management of DM1.

7.
Sci Rep ; 14(1): 7375, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548777

ABSTRACT

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteomics , Pandemics
8.
Cell Host Microbe ; 32(4): 606-622.e8, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38479396

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Humans , Chikungunya Fever/complications , Proteomics , Chikungunya virus/genetics , Cytokines/metabolism
9.
Article in English | MEDLINE | ID: mdl-38424029

ABSTRACT

In this review, we discuss the cutting-edge developments in mass spectrometry proteomics and metabolomics that have brought improvements for the identification of new disease-based biomarkers. A special focus is placed on psychiatric disorders, for example, schizophrenia, because they are considered to be not a single disease entity but rather a spectrum of disorders with many overlapping symptoms. This review includes descriptions of various types of commonly used mass spectrometry platforms for biomarker research, as well as complementary techniques to maximize data coverage, reduce sample heterogeneity, and work around potentially confounding factors. Finally, we summarize the different statistical methods that can be used for improving data quality to aid in reliability and interpretation of proteomics findings, as well as to enhance their translatability into clinical use and generalizability to new data sets. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 17 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

10.
J Neurochem ; 168(3): 238-250, 2024 03.
Article in English | MEDLINE | ID: mdl-38332572

ABSTRACT

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Subject(s)
Antipsychotic Agents , Clozapine , Animals , Humans , Clozapine/pharmacology , Haloperidol/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Dizocilpine Maleate/pharmacology , Proteome/metabolism , N-Methylaspartate , Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Proteomics , Antipsychotic Agents/pharmacology , Brain/metabolism
11.
Phytochem Anal ; 35(4): 889-902, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38369344

ABSTRACT

INTRODUCTION: The species Lantana camara is used in folk medicine. The biological activities of this medicinal plant are attributable to the presence of various derivatives of triterpenoids and phenolic compounds present in its preparations, indicating excellent economic potential. OBJECTIVE: In this study, the operational conditions of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were optimized using Box-Behnken design to improve the total phenolic content (TPC) recovered in hydroethanolic extracts of L. camara leaves. MATERIAL AND METHODS: The TPC, total flavonoid content (TFC), and antioxidant activities of the hydroalcoholic extracts of L. camara, prepared by UAE and MAE under the optimized extraction conditions, were compared with those of the extracts obtained by conventional extraction methods. RESULTS: Under the optimal conditions, the extracts obtained by UAE (35% ethanol, 25 min, and a solvent-to-solid ratio of 60:1 mL/g) and by MAE (53% ethanol, 15 min, and 300 W) provided high yields of 32.50% and 38.61% and TPC values of 102.89 and 109.83 mg GAE/g DW, respectively. The MAE extract showed the best results with respect to TPC, TFC, and antioxidant activities, followed by extracts obtained by UAE, Soxhlet extraction, decoction, maceration, and infusion, in that order. CONCLUSION: The results obtained indicate that L. camara may be used as an important source of antioxidant phenolic compounds to obtain products with high biological and economic potential, especially when the extraction process is performed under appropriate conditions using MAE and/or UAE, employing environmentally friendly solvents such as water and ethanol.


Subject(s)
Antioxidants , Lantana , Microwaves , Phenols , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/analysis , Lantana/chemistry , Phenols/analysis , Phenols/isolation & purification , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Mass Spectrometry/methods , Flavonoids/analysis , Flavonoids/isolation & purification , Ultrasonic Waves , Ultrasonics/methods
12.
Psychiatry Res ; 332: 115682, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198856

ABSTRACT

Background Suicide is one of the leading global causes of death. Behavior patterns from suicide ideation to completion are complex, involving multiple risk factors. Advances in technologies and large-scale bioinformatic tools are changing how we approach biomedical problems. The "omics" field may provide new knowledge about suicidal behavior to improve identification of relevant biological pathways associated with suicidal behavior. Methods We reviewed transcriptomic, proteomic, and metabolomic studies conducted in blood and post-mortem brains from individuals who experienced suicide or suicidal behavior. Omics data were combined using systems biology in silico, aiming at identifying major biological mechanisms and key molecules associated with suicide. Results Post-mortem samples of suicide completers indicate major dysregulations in pathways associated with glial cells (astrocytes and microglia), neurotransmission (GABAergic and glutamatergic systems), neuroplasticity and cell survivor, immune responses and energy homeostasis. In the periphery, studies found alterations in molecules involved in immune responses, polyamines, lipid transport, energy homeostasis, and amino and nucleic acid metabolism. Limitations We included only exploratory, non-hypothesis-driven studies; most studies only included one brain region and whole tissue analysis, and focused on suicide completers who were white males with almost none confounding factors. Conclusions We can highlight the importance of synaptic function, especially the balance between the inhibitory and excitatory synapses, and mechanisms associated with neuroplasticity, common pathways associated with psychiatric disorders. However, some of the pathways highlighted in this review, such as transcriptional factors associated with RNA splicing, formation of cortical connections, and gliogenesis, point to mechanisms that still need to be explored.


Subject(s)
Mental Disorders , Suicidal Ideation , Male , Humans , Proteomics , Risk Factors , Gene Expression Profiling
13.
Biochem Soc Trans ; 52(1): 163-176, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38288874

ABSTRACT

The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Cellular Reprogramming , Neurodegenerative Diseases/metabolism
14.
Food Res Int ; 175: 113684, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129028

ABSTRACT

The demand for organic vegetables is increasing worldwide, which has led to the growth of organic agriculture. However, information on chemical composition and antioxidant activity in vegetables grown organically under controlled conditions remains uncertain. For this study, 3 vegetables widely consumed in Brazil were cultivated in controlled organic and conventional cultivation systems: lettuce, coriander and tomato. Their chemical composition, mineral concentration, phenolic compound content, flavonoids and antioxidant activity (AA) were evaluated. The analyses of chemical and mineral composition revealed differences between the cultivation systems. Organic lettuce presented higher content of ashes, calcium and potassium. A higher content of phenolic compounds and flavonoids was observed in most organic vegetables. Using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay, the organic tomato exhibited higher AA compared to conventional, while the ferric-reducing antioxidant power (FRAP) method showed higher AA for organic coriander and tomato than theirs conventional version. The correlation between bioactive compounds and AA was positive, higher and stronger for organic vegetables, considering phenolic compounds (including flavonoids) and DPPH or FRAP antioxidant activity. Principal Component Analysis (PCA) disclosed that organic lettuce and coriander were grouped according bioactive components. In general, organic vegetables showed better results for bioactive compounds and antioxidant activity.


Subject(s)
Antioxidants , Flavonoids , Antioxidants/analysis , Flavonoids/analysis , Vegetables/chemistry , Phenols/analysis , Minerals
15.
Biomarkers ; 28(8): 692-702, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38131287

ABSTRACT

BACKGROUND AND OBJECTIVES: In order to detect genetic damage, different methods have been developed, such as micronuclei and comet assay. The comet assay presents some advantages when compared to the other aforementioned methods, including wide versatility, as any eukaryotic cell can be evaluated at an individual cellular level. In this context, the aim of this systematic review was designed to help further elucidate the following question: is the comet assay a suitable biomarker of in vivo oral carcinogenesis? MATERIAL AND METHODS: The present systematic review was performed in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Full manuscripts from 18 studies were carefully selected in this setting. RESULTS: A total of 15 studies demonstrated positive findings for genotoxicity in peripheral blood or oral cells in patients with pre-malignant lesions or oral cancer. In the quality assessment of studies, 1 was classified as Strong, 5 were considered as Moderate, and 12 were classified as Weak. CONCLUSION: In summary, the comet assay can be a useful biomarker for oral carcinogenesis. However, further studies with more strict parameters are suggested (with less uncontrolled confounders) in order to increase findings reliability for diagnosis of oral potentially malignant lesions.


Subject(s)
DNA Damage , Mouth Neoplasms , Humans , Carcinogenesis/genetics , Comet Assay/methods , Mouth Neoplasms/diagnosis , Mouth Neoplasms/genetics , Reproducibility of Results
16.
Mol Neurobiol ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37999871

ABSTRACT

Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.

17.
Nat Commun ; 14(1): 5850, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730674

ABSTRACT

We previously reported initial clinical results of post-transcriptional gene silencing of BCL11A expression (NCT03282656) reversing the fetal to adult hemoglobin switch. A goal of this approach is to increase fetal hemoglobin (HbF) expression while coordinately reducing sickle hemoglobin (HbS) expression. The resulting combinatorial effect should prove effective in inhibiting HbS polymerization at lower physiologic oxygen values thereby mitigating disease complications. Here we report results of exploratory single-cell analysis of patients in which BCL11A is targeted molecularly and compare results with cells of patients treated with hydroxyurea (HU), the current standard of care. We use single-cell assays to assess HbF, HbS, oxygen saturation, and hemoglobin polymer content in RBCs for nine gene therapy trial subjects (BCLshmiR, median HbF% = 27.9) and compare them to 10 HU-treated subjects demonstrating high and comparable levels of HbF (HU High Responders, median HbF% = 27.0). All BCL11A patients achieved the primary endpoint for NCT03282656, which was defined by an absolute neutrophil count greater than or equal to 0.5 × 109 cells/L for three consecutive days, achieved within 7 weeks following infusion. Flow cytometric assessment of single-RBC HbF and HbS shows fewer RBCs with high HbS% that would be most susceptible to sickling in BCLshmiR vs. HU High Responders: median 42% of RBCs with HbS%>70% in BCLshmiR vs. 61% in HU High Responders (p = 0.004). BCLshmiR subjects also demonstrate more RBCs resistant to HbS polymerization at lower physiologic oxygen tension: median 32% vs. 25% in HU High Responders (p = 0.006). Gene therapy-induced BCL11A down-regulation reverses the fetal-to-adult hemoglobin switch and induces RBCs with higher HbF%, lower HbS%, and greater resistance to deoxygenation-induced polymerization in clinical trial subjects compared with a cohort of highly responsive hydroxyurea-treated subjects.


Subject(s)
Hemoglobin, Sickle , Hydroxyurea , Adult , Humans , Hydroxyurea/pharmacology , Hydroxyurea/therapeutic use , Erythrocytes , Fetus , Fetal Hemoglobin/genetics , Transcription Factors
18.
Gut Microbes ; 15(2): 2249146, 2023 12.
Article in English | MEDLINE | ID: mdl-37668317

ABSTRACT

Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Animals , Mice , SARS-CoV-2 , Anti-Bacterial Agents , Disease Progression
19.
Brain Sci ; 13(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37759953

ABSTRACT

Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...