Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 50(13): 3917-3927, 2023 11.
Article in English | MEDLINE | ID: mdl-37552369

ABSTRACT

INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[11C]verapamil PET. (R)-[11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (VT), Ki, and the rate constants K1 and k2). In addition, a reversible two-tissue compartment model with fixed k3/k4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (VB) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the VT for [18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [18F]MC225 VT, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Humans , Male , Female , Middle Aged , Aged , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Reproducibility of Results , Brain/diagnostic imaging , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Positron-Emission Tomography , Verapamil , Radiopharmaceuticals/pharmacokinetics
2.
Mol Imaging Biol ; 24(3): 394-403, 2022 06.
Article in English | MEDLINE | ID: mdl-34611766

ABSTRACT

PROPOSE: This study aims to explore the use of the Centiloid (CL) method in amyloid-ß PET quantification to evaluate distinct cognitive aging stages, investigating subjects' mismatch classification using different cut-points for amyloid-ß positivity. PROCEDURES: The CL equation was applied in four groups of individuals: SuperAgers (SA), healthy age-matched controls (AC), healthy middle-aged controls (MC), and Alzheimer's disease (AD). The amyloid-ß burden was calculated and compared between groups and quantitative variables. Three different cut-points (Jack CR, Wiste HJ, Weigand SD, et al., Alzheimer's Dement 13:205-216, 2017; Salvadó G, Molinuevo JL, Brugulat-Serrat A, et al., Alzheimer's Res Ther 11:27, 2019; and Amadoru S, Doré V, McLean CA, et al., Alzheimer's Res Ther 12:22, 2020) were applied in CL values to differentiate the earliest abnormal pathophysiological accumulation of Aß and the established Aß pathology. RESULTS: The AD group exhibited a significantly increased Aß burden compared to the MC, but not AC groups. Both healthy control (MC and AC) groups were not significantly different. Visually, the SA group showed a diverse distribution of CL values compared with MC; however, the difference was not significant. The CL values have a moderate and significant relationship between Aß visual read, RAVLT DR and MMSE. Depending on the cut-point used, 10 CL, 19 CL, or 30 CL, 7.5% of our individuals had a different classification in the Aß positivity. For the AC group, we obtained about 40 to 60% of the individuals classified as positive. CONCLUSION: SuperAgers exhibited a similar Aß load to AC and MC, differing in cognitive performance. Independently of cut-point used (10 CL, 19 CL, or 30 CL), three SA individuals were classified as Aß positive, showing the duality between the individual's clinics and the biological definition of Alzheimer's. Different cut-points lead to Aß positivity classification mismatch in individuals, and an extra care is needed for individuals who have a CL value between 10 and 30 CL.


Subject(s)
Alzheimer Disease , Cognitive Aging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides , Aniline Compounds , Humans , Middle Aged , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...