Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36832973

ABSTRACT

Bio-mapping studies play an important role, as the data collected can be managed and analyzed in multiple ways to look at process trends, find explanations about the effect of process changes, activate a root cause analysis for events, and even compile performance data to demonstrate to inspection authorities or auditors the effect of certain decisions made on a daily basis and their effects over time in commercial settings not only from the food safety perspective but also from the production side. This study presents an alternative analysis of bio-mapping data collected throughout several months in a commercial poultry processing operation as described in the article "Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Interventions". The conducted analysis identifies the processing shift effect on microbial loads, attempts to find correlation between microbial indicators data and pathogens loads, and identifies novel visualization approaches and conducts distribution analysis for microbial indicators and pathogens in a commercial poultry processing facility. From the data analyzed, a greater number of locations were statistically different between shifts under reduced levels of chemical interventions with higher means at the second shift for both indicators and pathogens levels. Minimal to negligible correlation was found when comparing aerobic counts and Enterobacteriaceae counts with Salmonella levels, with significant variability between sampling locations. Distribution analysis and visualization as a bio-map of the process resulted in a clear bimodality in reduced chemical conditions for multiple locations mostly explained by shift effect. The development and use of bio-mapping data, including proper data visualization, improves the tools needed for ongoing decision making in food safety systems.

2.
Foods ; 11(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35327198

ABSTRACT

The poultry industry in the United States has traditionally implemented non-chemical and chemical interventions against Salmonella spp. and Campylobacter spp. on the basis of experience and word-of-mouth information shared among poultry processors. The effects of individual interventions have been assessed with microbiological testing methods for Salmonella spp. and Campylobacter spp. prevalence as well as quantification of indicator organisms, such as aerobic plate counts (APC), to demonstrate efficacy. The current study evaluated the loads of both indicators and pathogens in a commercial chicken processing facility, comparing the "normal chemical", with all chemical interventions turned-on, at typical chemical concentrations set by the processing plant versus low-chemical process ("reduced chemical"), where all interventions were turned off or reduced to the minimum concentrations considered in the facility's HACCP system. Enumeration and prevalence of Salmonella spp. and Campylobacter spp. as well as indicator organisms (APC and Enterobacteriaceae-EB) enumeration were evaluated to compare both treatments throughout a 25-month sampling period. Ten locations were selected in the current bio-mapping study, including live receiving, rehanger, post eviscerator, post cropper, post neck breaker, post IOBW #1, post IOBW #2, prechilling, post chilling, and parts (wings). Statistical process control parameters for each location and processing schemes were developed for each pathogen and indicator evaluated. Despite demonstrating significant statistical differences between the normal and naked processes in Salmonella spp. counts ("normal" significantly lower counts than the "reduced" at each location except for post-eviscerator and post-cropper locations), the prevalence of Salmonella spp. after chilling is comparable on both treatments (~10%), whereas for Campylobacter spp. counts, only at the parts' location was there significant statistical difference between the "normal chemical" and the "reduced chemical". Therefore, not all chemical intervention locations show an overall impact on Salmonella spp. or Campylobacter spp., and certain interventions can be turned off to achieve the same or better microbial performance if strategic intervention locations are enhanced.

3.
Vet Microbiol ; 107(3-4): 215-24, 2005 May 20.
Article in English | MEDLINE | ID: mdl-15863280

ABSTRACT

Ninety-five avian pathogenic Escherichia coli (APEC) isolates recovered from diagnosed cases of avian colibacillosis from North Georgia between 1996 and 2000 were serotyped and examined for typical virulence-factors, susceptibility to antimicrobials of human and veterinary significance, and genetic relatedness. Twenty different serotypes were identified, with O78 being the most common (12%). The majority of the avian E. coli isolates (60%), however, were non-typeable with standard O antisera. Eighty-four percent of isolates were PCR positive for the temperature-sensitive hemagglutinin (tsh) gene and 86% positive for the increased serum survival (iss) gene. Multiple antimicrobial-resistant phenotypes (> or =3 antimicrobials) were observed in 92% of E. coli isolates, with the majority of isolates displaying resistance to sulfamethoxazole (93%), tetracycline (87%), streptomycin (86%), gentamicin (69%), and nalidixic acid (59%). Fifty-six E. coli isolates displaying resistance to nalidixic acid were co-resistant to difloxacin (57%), enrofloxacin (16%), gatifloxacin (2%), and levofloxacin (2%). DNA sequencing revealed point mutations in gyrA (Ser83-Leu, Asp87-Tyr, Asp87-Gly, Asp87-Ala), gyrB (Glu466-Asp, Asp426-Thr), and parC (Ser80-Ile, Ser80-Arg). No mutations were observed in parE. Twelve of the quinolone-resistant E. coli isolates were tolerant to cyclohexane, a marker for upregulation of the acrAB multi-drug resistance efflux pump. Quinolone-resistant isolates were further genetically characterized via ribotyping. Twenty-two distinct ribogroups were identified, with 61% of isolates clustering into four major ribogroups, indicating that quinolone resistance has emerged among multiple avian pathogenic E. coli serogroups and chromosomal backgrounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens , Escherichia coli Infections/veterinary , Escherichia coli/classification , Poultry Diseases/microbiology , Animals , Base Sequence , Cluster Analysis , DNA Gyrase/chemistry , DNA Gyrase/genetics , DNA Topoisomerase IV/chemistry , DNA Topoisomerase IV/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Microbial Sensitivity Tests/veterinary , Molecular Sequence Data , Polymerase Chain Reaction/veterinary , Ribotyping/veterinary , Sequence Alignment , Sequence Analysis, DNA , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...