Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(1): 101938, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33426510

ABSTRACT

M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-ß enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations.

2.
Mol Cell Proteomics ; 13(8): 2114-31, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24912852

ABSTRACT

Several genes encoding for proteins involved in proliferation, invasion, and apoptosis are known to be direct miR-34a targets. Here, we used proteomics to screen for targets of miR-34a in neuroblastoma (NBL), a childhood cancer that originates from precursor cells of the sympathetic nervous system. We examined the effect of miR-34a overexpression using a tetracycline inducible system in two NBL cell lines (SHEP and SH-SY5Y) at early time points of expression (6, 12, and 24 h). Proteome analysis using post-metabolic labeling led to the identification of 2,082 proteins, and among these 186 were regulated (112 proteins down-regulated and 74 up-regulated). Prediction of miR-34a targets via bioinformatics showed that 32 transcripts held miR-34a seed sequences in their 3'-UTR. By combining the proteomics data with Kaplan Meier gene-expression studies, we identified seven new gene products (ALG13, TIMM13, TGM2, ABCF2, CTCF, Ki67, and LYAR) that were correlated with worse clinical outcomes. These were further validated in vitro by 3'-UTR seed sequence regulation. In addition, Michigan Molecular Interactions searches indicated that together these proteins affect signaling pathways that regulate cell cycle and proliferation, focal adhesions, and other cellular properties that overall enhance tumor progression (including signaling pathways such as TGF-ß, WNT, MAPK, and FAK). In conclusion, proteome analysis has here identified early targets of miR-34a with relevance to NBL tumorigenesis. Along with the results of previous studies, our data strongly suggest miR-34a as a useful tool for improving the chance of therapeutic success with NBL.


Subject(s)
Metabolic Networks and Pathways , MicroRNAs/genetics , Neuroblastoma/metabolism , Proteomics/methods , 3' Untranslated Regions , Cell Line, Tumor , Dactinomycin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , MicroRNAs/metabolism , Neuroblastoma/genetics , Tetracycline/pharmacology
3.
Mol Ther ; 22(6): 1151-1163, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24441398

ABSTRACT

While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted delivery of a miRNA with tumor suppressor function, let-7g. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase Axl (GL21.T), here we describe the development of aptamer-miRNA conjugates as multifunctional molecules that inhibit the growth of Axl-expressing tumors. We conjugated the let-7g miRNA to GL21.T and demonstrate selective delivery to target cells, processing by the RNA interference machinery, and silencing of let-7g target genes. Importantly, the multifunctional conjugate reduced tumor growth in a xenograft model of lung adenocarcinoma. Therefore, our data establish aptamer-miRNA conjugates as a novel tool for targeted delivery of miRNAs with therapeutic potential.


Subject(s)
Aptamers, Nucleotide/pharmacology , MicroRNAs/genetics , MicroRNAs/pharmacology , Neoplasms/pathology , Neoplasms/therapy , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/therapeutic use , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Male , Mice, Nude , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neoplasms, Experimental , Organ Specificity , Axl Receptor Tyrosine Kinase
4.
Clin Exp Metastasis ; 30(1): 47-68, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22760522

ABSTRACT

Dipyridamole is a widely prescribed drug in ischemic disorders, and it is here investigated for potential clinical use as a new treatment for breast cancer. Xenograft mice bearing triple-negative breast cancer 4T1-Luc or MDA-MB-231T cells were generated. In these in vivo models, dipyridamole effects were investigated for primary tumor growth, metastasis formation, cell cycle, apoptosis, signaling pathways, immune cell infiltration, and serum inflammatory cytokines levels. Dipyridamole significantly reduced primary tumor growth and metastasis formation by intraperitoneal administration. Treatment with 15 mg/kg/day dipyridamole reduced mean primary tumor size by 67.5 % (p = 0.0433), while treatment with 30 mg/kg/day dipyridamole resulted in an almost a total reduction in primary tumors (p = 0.0182). Experimental metastasis assays show dipyridamole reduces metastasis formation by 47.5 % in the MDA-MB-231T xenograft model (p = 0.0122), and by 50.26 % in the 4T1-Luc xenograft model (p = 0.0292). In vivo dipyridamole decreased activated ß-catenin by 38.64 % (p < 0.0001), phospho-ERK1/2 by 25.05 % (p = 0.0129), phospho-p65 by 67.82 % (p < 0.0001) and doubled the expression of IkBα (p = 0.0019), thus revealing significant effects on Wnt, ERK1/2-MAPK and NF-kB pathways in both animal models. Moreover dipyridamole significantly decreased the infiltration of tumor-associated macrophages and myeloid-derived suppressor cells in primary tumors (p < 0.005), and the inflammatory cytokines levels in the sera of the treated mice. We suggest that when used at appropriate doses and with the correct mode of administration, dipyridamole is a promising agent for breast-cancer treatment, thus also implying its potential use in other cancers that show those highly activated pathways.


Subject(s)
Breast Neoplasms/prevention & control , Dipyridamole/therapeutic use , Lung Neoplasms/prevention & control , Phosphodiesterase Inhibitors/therapeutic use , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Immunoenzyme Techniques , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Xenograft Model Antitumor Assays , beta Catenin/genetics , beta Catenin/metabolism
5.
Neuro Oncol ; 14(5): 596-612, 2012 May.
Article in English | MEDLINE | ID: mdl-22411914

ABSTRACT

Micro-RNA (miR) 199b-5p targets Hes1 in medulloblastoma, one of the downstream effectors of both the canonical Notch and noncanonical Sonic Hedgehog pathways. In medulloblastoma patients, expression of miR-199b-5p is significantly decreased in metastatic cases, thus suggesting a downregulation mechanism. We studied this mechanism, which is mediated mostly by Hes1 and epigenetic promoter modifications. The miR-199b-5p promoter region was characterized, which identified a Hes1 binding site, thus demonstrating a negative feedback loop of regulation. MiR-199b-5p was shown to be downregulated in several medulloblastoma cell lines and in tumors by epigenetic methylation of a cytosine-phosphate-guanine island upstream of the miR-199b-5p promoter. Furthermore, the cluster of differention (CD) carbohydrate antigen CD15, a marker of medulloblastoma tumor-propagating cells, is an additional direct target of miR-199b-5p. Most importantly, regulation of miR-199b-5p expression in these CD15+/CD133+ tumor-propagating cells was influenced by only Hes1 expression and not by any epigenetic mechanism of regulation. Moreover, reverse-phase protein array analysis showed both the Akt and extracellular-signal-regulated kinase pathways as being mainly negatively regulated by miR-199b-5p expression in several medulloblastoma cell lines and in primary cell cultures. We present here the finely tuned regulation of miR-199b-5p in medulloblastoma, underlining its crucial role by its additional targeting of CD15.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cerebellar Neoplasms/genetics , Epigenomics , Fucosyltransferases/metabolism , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Lewis X Antigen/metabolism , Medulloblastoma/genetics , MicroRNAs/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Blotting, Western , Cell Proliferation , Cells, Cultured , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Child, Preschool , Chromatin Immunoprecipitation , CpG Islands , DNA Methylation , Female , Flow Cytometry , Fucosyltransferases/genetics , Homeodomain Proteins/genetics , Humans , Infant , Kidney/cytology , Kidney/metabolism , Lewis X Antigen/genetics , Male , Medulloblastoma/metabolism , Medulloblastoma/pathology , MicroRNAs/metabolism , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Transcription Factor HES-1
6.
J Neurooncol ; 106(1): 59-70, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21735115

ABSTRACT

Medulloblastoma is one of the leading causes of morbidity and mortality in pediatric cancer. Wnt-active tumors, an independent molecular subgroup in medulloblastoma, are characterized by a distinct pattern of genomic aberrations. We assessed the anticancer activity of cantharidin and norcantharidin against medulloblastoma, as cell lines in vitro and in athymic nude mice in vivo. Cantharidin and norcantharidin treatment impaired the growth of DAOY and UW228 medulloblastoma cells and promoted the loss of ß-catenin activation and the ß-catenin nuclearization linked to N-cadherin impairment in vitro. Intra-peritoneal administration of norcantharidin inhibited the growth of intra-cerebellum tumors in orthotopic xenograft nude mice. Analysis of the xenograft tissues revealed enhanced neuronal differentiation and reduced ß-catenin expression. Our findings suggest that norcantharidin has potential therapeutic applications in the treatment of medulloblastoma as a result of its ability to cross the blood-brain barrier and its impairment of Wnt-ß-catenin signaling.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Medulloblastoma/drug therapy , Wnt Proteins/physiology , beta Catenin/physiology , Animals , Apoptosis/physiology , Blood-Brain Barrier/physiology , Brain Neoplasms/pathology , Cell Cycle/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Flow Cytometry , Fluorescent Antibody Technique , G2 Phase/drug effects , Genes, Reporter , Indicators and Reagents , Luciferases/genetics , Medulloblastoma/pathology , Mice , Mice, SCID , Neoplasm Transplantation/physiology , Polymerase Chain Reaction , Protein Transport/physiology , Signal Transduction/physiology , Wnt Proteins/antagonists & inhibitors , beta Catenin/antagonists & inhibitors
7.
PLoS One ; 6(9): e24584, 2011.
Article in English | MEDLINE | ID: mdl-21931765

ABSTRACT

BACKGROUND: Through negative regulation of gene expression, microRNAs (miRNAs) can function as oncosuppressors in cancers, and can themselves show altered expression in various tumor types. Here, we have investigated medulloblastoma tumors (MBs), which arise from an early impairment of developmental processes in the cerebellum, where Notch signaling is involved in many of the cell-fate-determining stages. Notch regulates a subset of MB cells that have stem-cell-like properties and can promote tumor growth. On the basis of this evidence, we hypothesized that miRNAs targeting the Notch pathway can regulate these phenomena, and can be used in anti-cancer therapies. METHODOLOGY/PRINCIPAL FINDINGS: In a screening of potential targets within Notch signaling, miR-34a was seen to be a regulator of the Notch pathway through its targeting of Notch ligand Delta-like 1 (Dll1). Down-regulation of Dll1 expression by miR-34a negatively regulates cell proliferation, and induces apoptosis and neural differentiation in MB cells. Using an inducible tetracycline on-off model of miR-34a expression, we show that in Daoy MB cells, Dll1 is the first target that is regulated in MB, as compared to the other targets analyzed here: Cyclin D1, cMyc and CDK4. MiR-34a expression negatively affects CD133(+)/CD15(+) tumor-propagating cells, then we assay through reverse-phase proteomic arrays, Akt and Stat3 signaling hypo-phosphorylation. Adenoviruses carrying the precursor miR-34a induce neurogenesis of tumor spheres derived from a genetic animal model of MB (Patch1(+/-) p53(-/-)), thus providing further evidence that the miR-34a/Dll1 axis controls both autonomous and non autonomous signaling of Notch. In vivo, miR-34a overexpression carried by adenoviruses reduces tumor burden in cerebellum xenografts of athymic mice, thus demonstrating an anti-tumorigenic role of miR-34a in vivo. CONCLUSIONS/SIGNIFICANCE: Despite advances in our understanding of the pathogenesis of MB, one-third of patients with MB remain incurable. Here, we show that stable nucleic-acid-lipid particles carrying mature miR-34a can target Dll1 in vitro and show equal effects to those of adenovirus miR-34a cell infection. Thus, this technology forms the basis for their therapeutic use for the delivery of miR-34a in brain-tumor treatment, with no signs of toxicity described to date in non-human primate trials.


Subject(s)
Antigens, CD/biosynthesis , Glycoproteins/biosynthesis , Intercellular Signaling Peptides and Proteins/metabolism , Lewis X Antigen/biosynthesis , Medulloblastoma/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Neurons/cytology , AC133 Antigen , Animals , Apoptosis , Calcium-Binding Proteins , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Humans , Mice , Peptides , Signal Transduction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...