Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Cell ; 170(3): 443-456.e14, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753424

ABSTRACT

Alzheimer's disease (AD)-linked mutations in Presenilins (PSEN) and the amyloid precursor protein (APP) lead to production of longer amyloidogenic Aß peptides. The shift in Aß length is fundamental to the disease; however, the underlying mechanism remains elusive. Here, we show that substrate shortening progressively destabilizes the consecutive enzyme-substrate (E-S) complexes that characterize the sequential γ-secretase processing of APP. Remarkably, pathogenic PSEN or APP mutations further destabilize labile E-S complexes and thereby promote generation of longer Aß peptides. Similarly, destabilization of wild-type E-S complexes by temperature, compounds, or detergent promotes release of amyloidogenic Aß. In contrast, E-Aßn stabilizers increase γ-secretase processivity. Our work presents a unifying model for how PSEN or APP mutations enhance amyloidogenic Aß production, suggests that environmental factors may increase AD risk, and provides the theoretical basis for the development of γ-secretase/substrate stabilizing compounds for the prevention of AD.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism , Presenilin-1/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Brain/metabolism , Brain/pathology , Cell Line , Endopeptidases , Enzyme Stability , Female , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Models, Molecular , Mutation , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Presenilin-1/chemistry , Presenilin-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...