Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 5(10): 1500-1507, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27612510

ABSTRACT

Transitions between aquatic and terrestrial prey capture are challenging. Trophic shifts demand a high degree of behavioral flexibility to account for different physical circumstances between water and air to keep performance in both environments. The Himalayan newt, Tylototriton verrucosus, is mostly terrestrial but becomes aquatic during its short breeding period. Nonetheless, it was assumed that it lacks the capability of trophic behavioral flexibility, only captures prey on land by its tongue (lingual prehension) and does not feed in water. This theory was challenged from stomach content analyses in wild populations that found a variety of aquatic invertebrates in the newts' stomachs during their breeding season. Accordingly, we hypothesized that T. verrucosus actively changes its terrestrial prey capture mechanism to hunt for aquatic prey at least during its aquatic stage. In fact, the kinematic analyses showed that T. verrucosus uses lingual prehension to capture prey on land but changes to suction feeding for aquatic strikes. The statistical analyses revealed that terrestrial and aquatic strikes differ significantly in most kinematic parameters while behavioral variability does not differ between both behaviors. In turn, the movement patterns in suction feeding showed a higher degree of coordination between jaw and hyoid movements compared to the putative primary feeding mode, namely lingual prehension. We conclude that T. verrucosus, though relatively slow compared to trophic specialists, benefits from a high degree of behavioral flexibility that allows exploiting food sources efficiently from two very different habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...