Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0269717, 2023.
Article in English | MEDLINE | ID: mdl-37585472

ABSTRACT

Carlsberg subtilisin from Bacillus licheniformis PB1 was investigated as a potential feed supplement, through immobilizing on bentonite for improving the growth rate of broilers. Initially, the pre-optimized and partially-purified protease was extracted and characterized using SDS-PAGE with MW 27.0 KDa. The MALDI-TOF-MS/MS spectrum confirmed a tryptic peptide peak with m/z 1108.496 referring to the Carlsberg subtilisin as a protein-digesting enzyme with alkaline nature. The highest free enzyme activity (30 U/mg) was observed at 50°C, 1 M potassium phosphate, and pH 8.0. the enhanced stability was observed when the enzyme was adsorbed to an inert solid support with 86.39 ± 4.36% activity retention under 20 optimized conditions. Additionally, the dried immobilized enzyme exhibited only a 5% activity loss after two-week storage at room temperature. Structural modeling (Docking) revealed that hydrophobic interactions between bentonite and amino acids surrounding the catalytic triad keep the enzyme structure intact upon drying at RT. The prominent hygroscopic nature of bentonite facilitated protein structure retention upon drying. During a 46-days study, supplementation of boilers' feed with the subtilisin-bentonite complex promoted significant weight gain i.e. 15.03% in contrast to positive control (p = 0.001).


Subject(s)
Poultry , Subtilisins , Animals , Subtilisins/metabolism , Poultry/metabolism , Chickens/metabolism , Bentonite , Tandem Mass Spectrometry , Subtilisin , Hydrogen-Ion Concentration
2.
Microbiology (Reading) ; 165(10): 1135-1150, 2019 10.
Article in English | MEDLINE | ID: mdl-31464662

ABSTRACT

Small non-coding sRNAs have versatile roles in regulating bacterial metabolism. Four short homologous Burkholderia cenocepacia sRNAs strongly expressed under conditions of growth arrest were recently identified. Here we report the detailed investigation of one of these, NcS27. sRNA NcS27 contains a short putative target recognition sequence, which is conserved throughout the order Burkholderiales. This sequence is the reverse complement of the Shine-Dalgarno sequence of a large number of genes involved in transport and metabolism of amino acids and carbohydrates. Overexpression of NcS27 sRNA had a distinct impact on growth, attenuating growth on a variety of substrates such as phenylalanine, tyrosine, glycerol and galactose, while having no effect on growth on other substrates. Transcriptomics and proteomics of NcS27 overexpression and silencing mutants revealed numerous predicted targets changing expression, notably of genes involved in degradation of aromatic amino acids phenylalanine and tyrosine, and in transport of carbohydrates. The conserved target recognition sequence was essential for growth phenotypes and gene expression changes. Cumulatively, our data point to a role of NcS27 in regulating the shutdown of metabolism upon nutrient deprivation in B. cenocepacia. We propose Burkholderiadouble-hairpin sRNA regulator bdhR1 as designation for ncS27.


Subject(s)
Burkholderia cenocepacia/metabolism , Carbon/metabolism , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/growth & development , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mutation , Proteomics , RNA, Bacterial/genetics , RNA, Small Untranslated/genetics
3.
ACS Appl Mater Interfaces ; 10(49): 41962-41977, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30444341

ABSTRACT

The surface properties of electrospun scaffolds can greatly influence protein adsorption and, thus, strongly dictate cell-material interactions. In this study, we aim to investigate possible correlations between the surface properties of argon, nitrogen, and ammonia and helium plasma-functionalized polycaprolactone (PCL) nanofibers (NFs) and their cellular interactions by examining the protein corona patterns of the plasma-treated NFs as well as the cell membrane proteins involved in cell proliferation. As a result of the performed plasma treatments, PCL NFs morphology was preserved, while wettability was improved profoundly after all treatments because of the incorporation of polar surface groups. Depending on the discharge gas, different types of groups are incorporated, which influenced the resultant cell-material interactions. Argon plasma-functionalized PCL NFs, only enriched by oxygen-containing functional groups, were found to show the best cell-material interactions, followed by N2 and He/NH3 plasma-treated samples. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry clearly indicated an increased protein retention compared with non-treated PCL NFs. The nine proteins retained best on plasma-treated NF are important mediators of extracellular matrix interaction, illustrating the importance thereof for cell proliferation and the viability of cells. Finally, 92 proteins that can be used to differentiate how the different plasma treatments are clustered and subjected to a gene ontology study, illustrating the importance of keratinization and extracellular matrix organization.


Subject(s)
Cell Proliferation , Materials Testing , Nanofibers/chemistry , Polyesters/chemistry , Cell Line , Cell Survival , Humans , Wettability
4.
Rapid Commun Mass Spectrom ; 32(6): 469-479, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29322563

ABSTRACT

RATIONALE: Burkholderia cenocepacia is an opportunistic pathogen that is commonly isolated from patients with cystic fibrosis (CF). Quorum sensing has been suggested to play a role in the activity of type II and type VI secretion systems and the release of virulence factors. Apart from the classical acyl homoserine lactone quorum sensing, B. cenocepacia also uses the diffusible signal factor system (DSF). Quantitative information on the true impact of DSF molecules on the release of ZmpA and other virulence factors is lacking. METHODS: Based on results of a label-free proteomics analysis addressing changes in the secretome in response to DSFs, a panel of peptides was selected to develop a microfluidics liquid chromatography/mass spectrometry (LC/MS) method implementing single reaction monitoring (SRM) to quantify B. cenocepacia virulence factors. RESULTS: Increase in secretion of virulence factors upon treatment with BDSF was observed for ZmpA and Aida, but not for ZmpB. Type VI secretion system dependent Hcp1 and TecA were decreased. However, non-physiological amounts of BDSF were needed to provoke the effect. DSFs from P. aeruginosa and S. maltophilia were also affecting virulence factor secretion, but the effect was smaller than for the endogenous BDSF. CONCLUSIONS: Microfluidics-based SRM is a useful tool to quantitatively assess the impact of quorum sensing on the release of virulence factors by (opportunistic) pathogens.

5.
Appl Microbiol Biotechnol ; 100(22): 9529-9541, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27251547

ABSTRACT

We recently discovered a novel enzyme in the exoproteome of Starmerella bombicola, which is structurally related to Candida antarctica lipase A. A knockout strain for this enzyme does no longer produce lactonic sophorolipids, prompting us to believe that this protein is the missing S. bombicola lactone esterase (SBLE). SBLE catalyzes a rather unusual reaction, i.e., an intramolecular esterification (lactonization) of acidic sophorolipids in an aqueous environment, which raised questions about its activity and mode of action. Here, we report the heterologous production of this enzyme in Pichia pastoris and its purification in a two-step strategy. Purified recombinant SBLE (rSBLE) was used to perform HPLC and liquid chromatography mass spectrometry (LCMS)-based assays with different sophorolipid mixtures. We experimentally confirmed that SBLE is able to perform ring closure of acetylated acidic sophorolipids. This substrate was selected for rSBLE kinetic studies to estimate the apparent values of K m . We established that rSBLE displays optimal activity in the pH range of 3.5 to 6 and has an optimal temperature in the range of 20 to 50 °C. Additionally, we generated a rSBLE mutant through site-directed mutagenesis of Ser194 in the predicted active site pocket and show that this mutant is lacking the ability to lactonize sophorolipids. We therefore propose that SBLE operates via the common serine hydrolase mechanism in which the catalytic serine residue is assisted by a His/Asp pair.


Subject(s)
Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Glycolipids/metabolism , Lactones/metabolism , Saccharomycetales/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/isolation & purification , Catalytic Domain , Chromatography, Liquid , Cloning, Molecular , Gene Deletion , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Mass Spectrometry , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Pichia/genetics , Pichia/metabolism , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomycetales/genetics , Temperature
6.
Article in English | MEDLINE | ID: mdl-25571296

ABSTRACT

In many critical care units, default patient monitor alarm settings are not fine-tuned to the vital signs of the patient population. As a consequence there are many alarms. A large fraction of the alarms are not clinically actionable, thus contributing to alarm fatigue. Recent attention to this phenomenon has resulted in attempts in many institutions to decrease the overall alarm load of clinicians by altering the trigger thresholds for monitored parameters. Typically, new alarm settings are defined based on clinical knowledge and patient population norms and tried empirically on new patients without quantitative knowledge about the potential impact of these new settings. We introduce alarm regeneration as a method to estimate the alarm rate of new alarm settings using recorded patient monitor data. This method enables evaluation of several alarm setting scenarios prior to using these settings in the clinical setting. An expression for the alarm rate variance is derived for the calculation of statistical confidence intervals on the results.


Subject(s)
Clinical Alarms , Clinical Alarms/statistics & numerical data , Humans , Intensive Care Units , Monitoring, Physiologic/instrumentation
7.
IEEE Trans Inf Technol Biomed ; 15(5): 778-86, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21421447

ABSTRACT

A ballistocardiograph records the mechanical activity of the heart. We present a novel algorithm for the detection of individual heart beats and beat-to-beat interval lengths in ballistocardiograms (BCGs) from healthy subjects. An automatic training step based on unsupervised learning techniques is used to extract the shape of a single heart beat from the BCG. Using the learned parameters, the occurrence of individual heart beats in the signal is detected. A final refinement step improves the accuracy of the estimated beat-to-beat interval lengths. Compared to many existing algorithms, the new approach offers heart rate estimates on a beat-to-beat basis. The agreement of the proposed algorithm with an ECG reference has been evaluated. A relative beat-to-beat interval error of 1.79% with a coverage of 95.94% was achieved on recordings from 16 subjects.


Subject(s)
Electrocardiography/methods , Heart Rate , Adaptation, Physiological , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...