Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Sci Robot ; 4(35)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-33137730

ABSTRACT

Swarms of tiny flying robots hold great potential for exploring unknown, indoor environments. Their small size allows them to move in narrow spaces, and their light weight makes them safe for operating around humans. Until now, this task has been out of reach due to the lack of adequate navigation strategies. The absence of external infrastructure implies that any positioning attempts must be performed by the robots themselves. State-of-the-art solutions, such as simultaneous localization and mapping, are still too resource demanding. This article presents the swarm gradient bug algorithm (SGBA), a minimal navigation solution that allows a swarm of tiny flying robots to autonomously explore an unknown environment and subsequently come back to the departure point. SGBA maximizes coverage by having robots travel in different directions away from the departure point. The robots navigate the environment and deal with static obstacles on the fly by means of visual odometry and wall-following behaviors. Moreover, they communicate with each other to avoid collisions and maximize search efficiency. To come back to the departure point, the robots perform a gradient search toward a home beacon. We studied the collective aspects of SGBA, demonstrating that it allows a group of 33-g commercial off-the-shelf quadrotors to successfully explore a real-world environment. The application potential is illustrated by a proof-of-concept search-and-rescue mission in which the robots captured images to find "victims" in an office environment. The developed algorithms generalize to other robot types and lay the basis for tackling other similarly complex missions with robot swarms in the future.

2.
Phys Med ; 32(6): 758-66, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27212122

ABSTRACT

PURPOSE: To assess the dosimetric impact of a patient positioning device for prone breast radiotherapy and assess the accuracy of a treatment planning system (TPS) in predicting this impact. METHODS: Beam attenuation and build-up dose perturbations, quantified by ionization chamber and radiochromic film dosimetry, were evaluated for 3 components of the patient positioning device: the carbon fiber baseplate, the support cushions and the support wedge for the contralateral breast. Dose calculations were performed using the XVMC dose engine implemented in the Monaco TPS. All components were included during planning CT acquisition. RESULTS: Beam attenuation amounted to 7.57% (6MV) and 5.33% (15MV) for beams obliquely intersecting the couchtop-baseplate combination. Beams traversing large sections of the support wedge were attenuated by 12.28% (6MV) and 9.37% (15MV). For the support cushion foam, beam attenuation remained limited to 0.11% (6MV) and 0.08% (15MV) per centimeter thickness. A substantial loss of dose build-up was detected when irradiating through any of the investigated components. TPS dose calculations accurately predicted beam attenuation by the baseplate and support wedge. A manual density overwrite was needed to model attenuation by the support cushion foam. TPS dose calculations in build-up regions differed considerably from measurements for both open beams and beams traversing the device components. CONCLUSIONS: Irradiating through the components of the positioning device resulted in a considerable degradation of skin sparing. Inclusion of the device components in the treatment planning CT allowed to accurately model the most important attenuation effect, but failed to accurately predict build-up doses.


Subject(s)
Breast Neoplasms/radiotherapy , Immobilization/instrumentation , Radiotherapy Planning, Computer-Assisted , Breast Neoplasms/diagnostic imaging , Humans , Prone Position , Radiometry , Radiotherapy Dosage , Tomography, X-Ray Computed
3.
Bioinspir Biomim ; 10(5): 056004, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26292289

ABSTRACT

An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.


Subject(s)
Aircraft/instrumentation , Biomimetics/instrumentation , Flight, Animal/physiology , Models, Statistical , Rheology/instrumentation , Wings, Animal/physiology , Animals , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization , Models, Biological , Reproducibility of Results , Rheology/methods , Sensitivity and Specificity , Shear Strength
4.
Strahlenther Onkol ; 189(11): 945-50, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24091914

ABSTRACT

BACKGROUND AND PURPOSE: Cone-beam computerized tomography (CBCT) enables three-dimensional information of the scanned region and provides soft tissue images with good spatial resolution. Our aim was to optimize image acquisition settings for prone and supine breast radiotherapy with respect to contour accuracy, clinical practicalities, and radiation dose. PATIENTS AND METHODS: CBCT images were acquired for both prone and supine anthropomorphic phantoms and a female cadaver in supine and prone set-up. CBCT protocols were investigated by altering the tube current, exposure time, range of projection views, field of view (FOV), and starting angle. For clinical practicalities, the frequency of the use of an offset CBCT isocenter was evaluated at 558 205°-CBCTs (37 patients; 13 prone and 24 supine) and 1272 360°-CBCTs (102 patients; 13 prone and 89 supine). RESULTS: Prone and supine breast CBCT images acquired with a bowtie filter, a small FOV, a range of projection views equaling 180°, a tube current of 20 mA and an exposure time of 32 ms, demonstrated adequate contour accuracy and an elimination of the offset CBCT isocenter procedure, while this occurred in 40.7 % for the old full-rotation protocol. Furthermore a 4.3-fold dose reduction was observed for the Computed Tomography Dose Index (CTDIw) compared to the preset Chest M20 protocol. CONCLUSION: The established 180° protocol demonstrated acceptable contour accuracy, eliminated the CBCT isocenter offset procedure and reduced patient radiation exposure.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Cone-Beam Computed Tomography/methods , Patient Positioning/methods , Radiation Dosage , Radiographic Image Enhancement/methods , Radiotherapy, Image-Guided/methods , Cadaver , Cone-Beam Computed Tomography/instrumentation , Female , Humans , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Prone Position , Radiation Protection/methods , Reproducibility of Results , Sensitivity and Specificity , Supine Position , Treatment Outcome , Workflow
5.
Phys Med Biol ; 57(22): N445-56, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23124004

ABSTRACT

The radiochromic film, which is used, in combination with a flatbed scanner has become a widely used tool for a quantitative evaluation of radiation dose in radiation therapy. One aspect of uncertainty using the radiochromic film is the magnitude of orientation effects when the orientation of the film is not kept constant during the digitization process. The aim of this note was to investigate the impact of using a combination of two crossed sheets of EBT2 film on various aspects of radiochromic film dosimetry. First the impact on the film sensitivity was studied. We also investigated the influence on orientation effects during scanning. The results show that the double crossed film combination increases the sensitivity with a factor 1.7-2.1 and practically eliminates the effects of film orientation on the optical density read-out and the lateral correction profiles.


Subject(s)
Film Dosimetry/methods , Artifacts , Film Dosimetry/instrumentation
6.
Med Phys ; 39(10): 6129-38, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23039652

ABSTRACT

PURPOSE: The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. METHODS: An inverse pyramid IMRT field, consisting of six regular and elongated 3 × 20 cm(2) field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. RESULTS: The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 × 5 cm(2) field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 × 5 cm(2). On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 × 20 cm(2) at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing field size and depth. Surprisingly a composite IMRT beam consisting of 20 adjacent strip segments also produced a significant orientational dependence of film response, notwithstanding the large total field size of 20 × 20 cm(2). CONCLUSIONS: This analysis allowed the development of a hypothesis about the physics behind the orientational dependence of film response in general and to formulate precautions when using film dosimetry in the dosimetric verification of multibeam treatments.


Subject(s)
Film Dosimetry/methods , Radiation Dosage , Radiotherapy, Intensity-Modulated/methods , Calibration , Phantoms, Imaging , Radiotherapy Dosage
7.
Med Phys ; 39(6): 3501-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22755730

ABSTRACT

PURPOSE: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. METHODS: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. RESULTS: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. CONCLUSIONS: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.


Subject(s)
Electrons/therapeutic use , Lasers , Particle Accelerators , Plasma Gases , Radiation Dosage , Radiotherapy/instrumentation , Feasibility Studies , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
8.
Bioinspir Biomim ; 7(2): 025003, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22617112

ABSTRACT

One of the major challenges in robotics is to develop a fly-like robot that can autonomously fly around in unknown environments. In this paper, we discuss the current state of the DelFly project, in which we follow a top-down approach to ever smaller and more autonomous ornithopters. The presented findings concerning the design, aerodynamics and autonomy of the DelFly illustrate some of the properties of the top-down approach, which allows the identification and resolution of issues that also play a role at smaller scales. A parametric variation of the wing stiffener layout produced a 5% more power-efficient wing. An experimental aerodynamic investigation revealed that this could be associated with an improved stiffness of the wing, while further providing evidence of the vortex development during the flap cycle. The presented experiments resulted in an improvement in the generated lift, allowing the inclusion of a yaw rate gyro, pressure sensor and microcontroller onboard the DelFly. The autonomy of the DelFly is expanded by achieving (1) an improved turning logic to obtain better vision-based obstacle avoidance performance in environments with varying texture and (2) successful onboard height control based on the pressure sensor.


Subject(s)
Aircraft/instrumentation , Biological Clocks/physiology , Diptera/physiology , Flight, Animal/physiology , Models, Biological , Robotics/instrumentation , Wings, Animal/physiology , Animals , Computer Simulation , Ecosystem , Equipment Design , Equipment Failure Analysis
9.
Phys Med Biol ; 57(1): 127-42, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22127288

ABSTRACT

This study evaluates the performance of the Nikon Coolscan 9000 ED film scanner for high-gradient radiochromic film dosimetry. As a reference for comparison, analogue experiments were performed on the Epson Expression 10000XL flatbed scanner. Based on these results, a dosimetric protocol was established for the Nikon scanner and its overall performance for high-gradient dosimetry was evaluated. The Nikon scanner demonstrated a high sensitivity for radiochromic film dosimetry, resulting in more contrast in the digitized image. The scanner's optics also demonstrated excellent stability and did not necessitate warm-up scans prior to data acquisition. Moreover, negative effects of temperature changes of the film inside the scanner were shown to be limited. None of the digitized images showed significant disturbances by moiré-patterns, by virtue of the absence of a glass plate for film positioning. However, scanner response was found to vary considerably across the reading area, requiring an optical density-dependent correction procedure to be incorporated into the scanning protocol. The main limitation of the Nikon Coolscan 9000 ED transmission scanner remains its film size restriction to 6.2 × 20 cm2. Nevertheless, its excellent characteristics render it the preferential tool for high-gradient radiochromic film dosimetry in applications limited to small film sizes, such as dosimetry in the build-up region.


Subject(s)
Film Dosimetry/methods , Photography/methods , Artifacts
10.
Phys Med Biol ; 54(9): 2951-69, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19384005

ABSTRACT

The purpose of this study was the investigation of perturbation factors for microionization chambers in small field dosimetry and the influence of penumbra for different spot sizes. To this purpose, correlated sampling was implemented in the EGSnrc Monte Carlo (MC) user code cavity: CScavity. CScavity was first benchmarked against results in the literature for an NE2571 chamber. An efficiency increase of 17 was attained for the calculation of a realistic chamber perturbation factor in a water phantom. Calculations have been performed for microionization chambers of type PinPoint 31006 and PinPoint 31016 in full BEAMnrc linac simulations. Investigating the physical backgrounds of the differences for these small field settings, perturbation factors have been split up into (1) central electrode perturbation, (2) wall perturbation, (3) air-to-water perturbation (chamber volume air-to-water) and (4) water volume perturbation (water chamber volume to 1 mm(3) voxel). The influence of different spot sizes, position in penumbra, measuring depth and detector geometry on these perturbation factors has been investigated, in a 0.8 x 0.8 cm(2) field setting. p(cel) for the PP31006 steel electrode shows a variation of up to 1% in the lateral position, but only 0.4% for the PP31016 with an Al electrode. The air-to-water perturbation in the optimal scanning direction for both profiles and depth is most influenced by the radiation field, and only to a small extent the chamber geometry. The PP31016 geometry (shorter, larger radius) requires less total perturbation within the central axis of the field, but results in slightly larger variations off axis in the optimal scanning direction. Smaller spot sizes (0.6 mm FWHM) and sharper penumbras, compared to larger spot sizes (2 mm FWHM), result in larger perturbation starting in the penumbra. The longer geometries of the PP31006/14/15 exhibit in the non-optimal scanning direction large variations in total perturbation (p(tot) 1.201(4) (0.6 mm spot, 3 mm off axis, type A MC uncertainty) to 0.803(4) (5 mm off axis)) mainly due to volume perturbation. Therefore in IMRT settings, when the detector is not always in the optimal scanning direction, the PP31016 geometry requires less extreme perturbation (max p(tot) 1.130(3)) and shows less variation. However, these results suggest that small variations in positioning, spot size or MLC result in large differences in perturbation factors. Therefore even these 0.016 cm(3) ionization chambers are limited in their use for a field setting of 0.8 x 0.8 cm(2), as used in this investigation.


Subject(s)
Radiometry/instrumentation , Air , Benchmarking , Electrodes , Electrons , Monte Carlo Method , Photons , Uncertainty , Water
11.
Phys Med Biol ; 54(6): 1565-78, 2009 Mar 21.
Article in English | MEDLINE | ID: mdl-19229091

ABSTRACT

We present different in vitro experimental models which allow us to evaluate the effect of spatially fractionated dose distributions on metabolic activity. We irradiated a monolayer of MCF-7/6 human breast cancer cells with a steep and a smooth 6 MV x-ray dose gradient. In the steep gradient model, we irradiated the cells with three separate small fields. We also developed two smooth gradient models. In the first model, the cells are cultured in a T25 flask and irradiated with a smooth dose gradient over the length of the flask, while in the second one, the cells are cultured in a 96-well plate and also irradiated over the length of the plate. In an attempt to correlate the spatially fractionated dose distributions with metabolic activity, the effect of irradiation was evaluated by means of the MTT assay. This assay is used to determine the metabolic activity by measuring the amount of formazan formed after the conversion of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) by cellular dehydrogenases. The results obtained with our different models suggest a dose-specific effect on metabolic activity, characterized by an increased formazan optical density occurring in the dose range 1.0-4.0 Gy in the steep dose gradient model and in the dose ranges 4.2-6.5 Gy and 2.3-5.1 Gy in the two smooth dose gradient models. The corresponding times for maximal formazan accumulation were 5-7 days in the steep dose gradient model and day 9-13 and day 9-11 in the smooth dose gradient models. Altogether, our results suggest that the MTT assay may be used as a biological dose-response meter to monitor the radiotherapeutic effectiveness.


Subject(s)
Dose Fractionation, Radiation , Models, Biological , Cell Line, Tumor , Humans , Physical Phenomena , Radiation Dosage
12.
Phys Med Biol ; 53(14): 3971-84, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18596368

ABSTRACT

The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.


Subject(s)
Film Dosimetry/methods , Artifacts , Calibration , Least-Squares Analysis , Regression Analysis , Sensitivity and Specificity , Workload
13.
Phys Med Biol ; 52(19): N449-57, 2007 Oct 07.
Article in English | MEDLINE | ID: mdl-17881795

ABSTRACT

Radiographic or silver halide film is a well-established 2D dosimeter with an unquestioned spatial resolution. But its higher sensitivity to low-energy photons has to be taken into consideration. Metal compensators or physical modulators to deliver intensity modulated radiation therapy (IMRT) are known to change the beam energy spectrum and to produce scattered photons and contaminating electrons. Therefore the reliability of film dosimetry in compensator-based IMRT might be questioned. Conflicting data have been reported in the literature. This uncertainty about the validity of film dosimetry in compensator-based IMRT triggered us to conduct this study. First, the effect of MCP-96 compensators of varying thickness on the depth dose characteristics was investigated using a diamond detector which has a uniform energy response. A beam hardening effect was observed at 6 MV that resulted in a depth dose increase that remained below 2% at 20 cm depth. At 25 MV, in contrast, beam softening produced a dose decrease of up to 5% at the same depth. Second, dose was measured at depth using EDR2 film in perpendicular orientation to both 6 MV and 25 MV beams for different compensator thicknesses. A film dose underresponse of 1.1% was found for a 30 mm thick block in a 25 MV beam, which realized a transmission factor of 0.243. The effect induced by the compensators is higher than the experimental error but still within the accepted overall uncertainty of film dosimetry in clinical IMRT QA. With radiographic film as an affordable QA tool, the physical compensator remains a low threshold technique to deliver IMRT.


Subject(s)
Film Dosimetry/instrumentation , Quality Assurance, Health Care/methods , Radiotherapy, Conformal/instrumentation , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Film Dosimetry/methods , Radiotherapy Dosage , Radiotherapy, Conformal/methods , Reproducibility of Results , Sensitivity and Specificity
14.
Phys Med Biol ; 52(11): 3275-90, 2007 Jun 07.
Article in English | MEDLINE | ID: mdl-17505102

ABSTRACT

The purpose of this investigation was the verification of both the measured data and quality of the implementation of the add-on ModuLeaf miniature multileaf collimator (ML mMLC) into the clinical treatment planning system for conformal stereotactic radiosurgery treatment. To this end the treatment head with ML mMLC was modeled in the BEAMnrc Monte Carlo (MC) code. The 6 MV photon beams used in the setup were first benchmarked with a set of measurements. A total ML mMLC transmission of 1.13% of the 10 x 10 cm2 open field dose was measured and reproduced with the BEAMnrc/DOSXYZnrc code. Correspondence between calculated and measured output factors (OFs) was within 2%. Correspondence between MC and measured profiles was within 2% dose and 2 mm distance, only for the smallest 0.5 x 0.5 cm2 field the results were within 3% dose. In the next step, the MC model was compared with Gafchromic film measurements and Pinnacle(3) 7.4 f (convolution superposition algorithm) calculated dose distributions, using a gamma evaluation comparison, for a multi-beam patient setup delivered to a Lucytrade mark phantom. The gamma evaluation of the MC versus Gafchromic film resulted in 3.4% of points not fulfilling gamma

Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Computer Simulation , Dose-Response Relationship, Radiation , Humans , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Photons , Quality Control , Radiation Dosage , Radiometry , Radiosurgery/instrumentation , Radiotherapy Dosage , X-Ray Film
15.
Phys Med Biol ; 52(1): 231-42, 2007 Jan 07.
Article in English | MEDLINE | ID: mdl-17183138

ABSTRACT

The purpose of this study was to investigate the value of a commercially available flatbed scanner for film dosimetry with radiochromic film for external radiotherapy. The EPSON Pro 1680 Expression scanner was examined as a densitometer for two-dimensional film dosimetry with Gafchromic EBT film. An accurate and efficient scanning procedure was established. Possible drift and warm-up effects of the scanner were studied and the direct physical influence of the scanner light on the radiochromic film was assessed. Next, we investigated the scan field uniformity. Also, we examined if the accuracy of radiochromic film was improved by subtracting the optical density of the unirradiated blank film from the optical density of the irradiated film. To assess the accuracy of Gafchromic EBT film when the EPSON scanner was used as a densitometer, the depth dose of a 2 x 15 cm(2) field and the in-plane and cross-plane profiles of a 15 x 15 cm(2) field were measured and compared with diamond detector measurements. When taking consecutive scans, we found that the optical density taken from the first scan was about 1% higher than the optical density taken from subsequent scans. We attribute this to the warming up of the lamp of the scanner. Longer-term drift of the scanner was found to be absent. We found that the use of a correction matrix was necessary to correct for the non-uniform scanner response over the scan field. Subtracting the optical density of the unirradiated blank film from the irradiated film improves the precision of the Gafchromic EBT film. Depth dose and profile measurements with Gafchromic EBT film and the diamond detector are in agreement within 2.5%. The EPSON Pro 1680 Expression scanner is an excellent tool for accurate two-dimensional film dosimetry with Gafchromic EBT film provided that some precautions and corrections are taken into account.


Subject(s)
Film Dosimetry/instrumentation , Film Dosimetry/methods , X-Ray Film , Calibration , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Fluorescent Dyes/pharmacology , Humans , Image Processing, Computer-Assisted , Radiation Dosage , Radiometry , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
16.
Phys Med Biol ; 51(3): 653-73, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16424587

ABSTRACT

Polymer gel dosimeters offer a wide range of applications in the three-dimensional verification of complex dose distributions such as in intensity-modulated radiotherapy. One of the major difficulties with polymer gel dosimeters is their sensitivity to oxygen, as oxygen inhibits the radiation-induced polymerization reaction. For several years, oxygen was removed from the gels by bubbling the sol with inert gases for several hours during the gel fabrication. Also, the gel had to be poured in containers with low oxygen permeability and solubility. Recently, it was found that these technical difficulties can easily be solved by adding an antioxidant to the gel. These gels are called 'normoxic' gels as they can be produced under normal atmospheric conditions. In this study several properties of polymer gel dosimeters have been investigated: the dose sensitivity, the temporal and spatial stability of the gel, the sensitivity of the dose response to temperature during irradiation and during MR imaging, the energy dependence and the dose-rate dependence. This study reveals that the normoxic polymer gel dosimeter based on methacrylic acid (nMAG) studied in this work has inferior radiation properties as compared to the polyacrylamide gelatine (PAG) gel dosimeters. It is shown that from the three different gel dosimeters investigated in this study, the nPAG gel dosimeter results in a less sensitive gel dosimeter but with superior radiation properties as compared to the nMAG gel dosimeter. The importance of investigating relevant radiation properties of gel dosimeters apart from the radiation sensitivity-prior to their use for dosimetric validation experiments-is illustrated and emphasized throughout this study. Other combinations of monomer and gelling agent may result in more reliable normoxic polymer gel dosimeters.


Subject(s)
Acrylamide/chemistry , Methacrylates/chemistry , Polymers/chemistry , Radiometry/instrumentation , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Antioxidants/chemistry , Dose-Response Relationship, Radiation , Gelatin/chemistry , Gels , Models, Statistical , Oxygen , Phantoms, Imaging , Sensitivity and Specificity , Temperature , Water
17.
Phys Med Biol ; 50(24): 5935-51, 2005 Dec 21.
Article in English | MEDLINE | ID: mdl-16333165

ABSTRACT

A new method is presented to decouple the parameters of the incident e(-) beam hitting the target of the linear accelerator, which consists essentially in optimizing the agreement between measurements and calculations when the difference filter, which is an additional filter inserted in the linac head to obtain uniform lateral dose-profile curves for the high energy photon beam, and flattening filter are removed from the beam path. This leads to lateral dose-profile curves, which depend only on the mean energy of the incident electron beam, since the effect of the radial intensity distribution of the incident e- beam is negligible when both filters are absent. The location of the primary collimator and the thickness and density of the target are not considered as adjustable parameters, since a satisfactory working Monte Carlo model is obtained for the low energy photon beam (6 MV) of the linac using the same target and primary collimator. This method was applied to conclude that the mean energy of the incident e- beam for the high energy photon beam (18 MV) of our Elekta SLi Plus linac is equal to 14.9 MeV. After optimizing the mean energy, the modelling of the filters, in accordance with the information provided by the manufacturer, can be verified by positioning only one filter in the linac head while the other is removed. It is also demonstrated that the parameter setting for Bremsstrahlung angular sampling in BEAMnrc ('Simple' using the leading term of the Koch and Motz equation or 'KM' using the full equation) leads to different dose-profile curves for the same incident electron energy for the studied 18 MV beam. It is therefore important to perform the calculations in 'KM' mode. Note that both filters are not physically removed from the linac head. All filters remain present in the linac head and are only rotated out of the beam. This makes the described method applicable for practical usage since no recommissioning process is required.


Subject(s)
Algorithms , Electrons , Monte Carlo Method , Photons , Scattering, Radiation , Computer Simulation , Particle Accelerators
18.
Stud Health Technol Inform ; 112: 249-321, 2005.
Article in English | MEDLINE | ID: mdl-15923733

ABSTRACT

Over the last four years, a community of researchers working on Grid and High Performance Computing technologies started discussing the barriers and opportunities that grid technologies must face and exploit for the development of health-related applications. This interest lead to the first Healthgrid conference, held in Lyon, France, on January 16th-17th, 2003, with the focus of creating increased awareness about the possibilities and advantages linked to the deployment of grid technologies in health, ultimately targeting the creation of a European/international grid infrastructure for health. The topics of this conference converged with the position of the eHealth division of the European Commission, whose mandate from the Lisbon Meeting was "To develop an intelligent environment that enables ubiquitous management of citizens' health status, and to assist health professionals in coping with some major challenges, risk management and the integration into clinical practice of advances in health knowledge." In this context "Health" involves not only clinical procedures but covers the whole range of information from molecular level (genetic and proteomic information) over cells and tissues, to the individual and finally the population level (social healthcare). Grid technology offers the opportunity to create a common working backbone for all different members of this large "health family" and will hopefully lead to an increased awareness and interoperability among disciplines. The first HealthGrid conference led to the creation of the Healthgrid association, a non-profit research association legally incorporated in France but formed from the broad community of European researchers and institutions sharing expertise in health grids. After the second Healthgrid conference, held in Clermont-Ferrand on January 29th-30th, 2004, the need for a "white paper" on the current status and prospective of health grids was raised. Over fifty experts from different areas of grid technologies, eHealth applications and the medical world were invited to contribute to the preparation of this document.


Subject(s)
Computer Communication Networks , Information Systems , Computer Communication Networks/organization & administration , Europe , Humans , Information Systems/organization & administration , International Cooperation , Medical Informatics Applications
19.
Phys Med Biol ; 50(8): N63-72, 2005 Apr 21.
Article in English | MEDLINE | ID: mdl-15815085

ABSTRACT

Recently, Kodak introduced new light-tight packages (vacuum packaging, aluminium layer under black polyethylene and different paper) for their oncology films (EDR-2, X-Omat V and PPL-2). In order to avoid additional uncertainty and to ensure transferability of previously published results, we assessed in this study the effect of the old and new packages on the dosimetric response of EDR-2 radiographic film. Therefore, sensitometric measurements were performed for different film assemblies (new envelope + new paper, old envelope + old paper, new envelope without paper and old envelope without paper). In addition, to assess possible effects of the package on the film depth-dose response, packaged films were irradiated in parallel geometry, and central depth-dose curves were retrieved. For the perpendicular geometry, on the other hand, the effect of the package was assessed at large depth for a high intensity-modulated inverse-pyramid beam. The results of the sensitometric measurements reveal no difference between the packages. However, the white colour of the paper in both the packages induces a dose-dependent increase in optical density (0-0.12) of the film. The depth-dose curves show better reproducibility for the new package and the new paper improves the accuracy of film dosimetry, but despite the company's effort to evacuate the air out of the new envelope, it remains necessary to clamp the films in the phantom for the parallel irradiation geometry. At 5 cm depth, the films irradiated in parallel geometry show an under-response of 3-5% compared to films irradiated perpendicularly. Finally, even at locations of large photon scatter, no filtration effect from the aluminium layer incorporated in the new envelope has been observed for perpendicular irradiation geometry.


Subject(s)
Equipment Failure Analysis , Film Dosimetry/instrumentation , Film Dosimetry/methods , Product Packaging/methods , Dose-Response Relationship, Radiation , Radiation Dosage
20.
Phys Med Biol ; 50(9): 2055-69, 2005 May 07.
Article in English | MEDLINE | ID: mdl-15843736

ABSTRACT

The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm3 containing a central cavity of 6 x 6 x 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm2 field and a larger 10 x 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between Monte Carlo and the superposition convolution algorithm of Pinnacle behind the lung region, for both field configurations. Pinnacle is quite accurate in the lung region. Deviations up to 5.6% for the small field are found in the lung region between Monte Carlo and the superposition convolution algorithm of Helax-TMS. Behind the lung region, Helax-TMS is in better agreement with Monte Carlo. Radiochromic film measurements or Monte Carlo simulations are reliable methods to establish the dose in and around lung tissue.


Subject(s)
Algorithms , Lung Neoplasms/radiotherapy , Lung/physiopathology , Models, Biological , Radiation Protection/methods , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Body Burden , Film Dosimetry/methods , Humans , Lung/radiation effects , Monte Carlo Method , Organ Specificity , Quality Assurance, Health Care/methods , Relative Biological Effectiveness , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...