Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Chem ; 12(10): 883-885, 2020 10.
Article in English | MEDLINE | ID: mdl-32968229
2.
Langmuir ; 34(51): 15839-15853, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30350702

ABSTRACT

The US government currently spends significant resources managing the legacies of the Cold War, including 300 million liters of highly radioactive wastes stored in hundreds of tanks at the Hanford (WA) and Savannah River (SC) sites. The materials in these tanks consist of highly radioactive slurries and sludges at very high pH and salt concentrations. The solid particles primarily consist of aluminum hydroxides and oxyhydroxides (gibbsite and boehmite), although many other materials are present. These form complex aggregates that dramatically affect the rheology of the solutions and, therefore, efforts to recover and treat these wastes. In this paper, we have used a combination of transmission and cryo-transmission electron microscopy, dynamic light scattering, and X-ray and neutron small and ultrasmall-angle scattering to study the aggregation of synthetic nanoboehmite particles at pH 9 (approximately the point of zero charge) and 12, and sodium nitrate and calcium nitrate concentrations up to 1 m. Although the initial particles form individual rhombohedral platelets, once placed in solution they quickly form well-bonded stacks, primary aggregates, up to ∼1500 Å long. These are more prevalent at pH = 12. Addition of calcium nitrate or sodium nitrate has a similar effect as lowering pH, but approximately 100 times less calcium than sodium is needed to observe this effect. These aggregates have fractal dimension between 2.5 and 2.6 that are relatively unaffected by salt concentration for calcium nitrate at high pH. Larger aggregates (>∼4000 Å) are also formed, but their size distributions are discrete rather than continuous. The fractal dimensions of these aggregates are strongly pH-dependent, but only become dependent on solute at high concentrations.

3.
Nat Commun ; 8(1): 2017, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29208904

ABSTRACT

In the original version of this Article, the Acknowledgements section omitted the Department of Energy-funded Environmental and Molecular Sciences Laboratory in which the XRD measurements were performed. This error has now been corrected in both the PDF and HTML versions of the Article.

4.
Chem Commun (Camb) ; 53(94): 12700-12703, 2017 Nov 23.
Article in English | MEDLINE | ID: mdl-29134988

ABSTRACT

We measured the binding energy and bonding parameters between model nucleotide functional groups and model clay mineral surfaces in solutions of acidic pH. We demonstrate that basal surfaces of clay minerals interact most strongly with nucleobases and show that the adsorption of the phosphate group to clay edges could facilitate polymerisation. Our results suggest that Al- and Fe-rich edge sites behave similarly in nucleotide polymerisation through change of the phosphodiester bond strength. We present an internally consistent set of thermodynamic parameters that represent the nucleotide-clay mineral system.

5.
Nat Commun ; 8(1): 835, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018200

ABSTRACT

Crystallization by particle attachment is impacting our understanding of natural mineralization processes and holds promise for novel materials design. When particles assemble in crystallographic alignment, expulsion of the intervening solvent and particle coalescence are enabled by near-perfect co-alignment via interparticle forces that remain poorly quantified. Here we report measurement and simulation of these nanoscale aligning forces for the ZnO(0001)-ZnO(000[Formula: see text]) system in aqueous solution. Dynamic force spectroscopy using nanoengineered single crystal probes reveals an attractive force with 60o rotational periodicity. Calculated distance and orientation-dependent potentials of mean force show several attractive free energy wells distinguished by numbers of intervening water layers, which reach a minimum when aligned. The calculated activation energy to separate the attractively bound solvated interfaces perfectly reproduces the measured 60o periodicity, revealing the key role of intervening water structuring as a basis to generate the interparticle torque that completes alignment and enables coalescence.Crystal growth is a fundamental process, important in a wide range of fields, but the interparticle forces responsible for molecule alignment are not well understood. Here, the authors measure the alignment forces in ZnO using dynamic force spectroscopy, highlighting the role of intervening water molecules.

6.
Nat Commun ; 8(1): 396, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855506

ABSTRACT

Long residence times of soil organic matter have been attributed to reactive mineral surface sites that sorb organic species and cause inaccessibility due to physical isolation and chemical stabilization at the organic-mineral interface. Instrumentation for probing this interface is limited. As a result, much of the micron- and molecular-scale knowledge about organic-mineral interactions remains largely qualitative. Here we report the use of force spectroscopy to directly measure the binding between organic ligands with known chemical functionalities and soil minerals in aqueous environments. By systematically studying the role of organic functional group chemistry with model minerals, we demonstrate that chemistry of both the organic ligand and mineral contribute to values of binding free energy and that changes in pH and ionic strength produce significant differences in binding energies. These direct measurements of molecular binding provide mechanistic insights into organo-mineral interactions, which could potentially inform land-carbon models that explicitly include mineral-bound C pools.Most molecular scale knowledge on soil organo-mineral interactions remains qualitative due to instrument limitations. Here, the authors use force spectroscopy to directly measure free binding energy between organic ligands and minerals and find that both chemistry and environmental conditions affect binding.

7.
Angew Chem Int Ed Engl ; 55(37): 11086-90, 2016 09 05.
Article in English | MEDLINE | ID: mdl-27532505

ABSTRACT

In spite of decades of research, mineral growth models based on ion attachment and detachment rates fail to predict behavior beyond a narrow range of conditions. Here we present a microkinetic model that accurately reproduces calcite growth over a very wide range of published experimental data for solution composition, saturation index, pH and impurities. We demonstrate that polynuclear complexes play a central role in mineral growth at high supersaturation and that a classical complexation model is sufficient to reproduce measured rates. Dehydration of the attaching species, not the mineral surface, is rate limiting. Density functional theory supports our conclusions. The model provides new insights into the molecular mechanisms of mineral growth that control biomineralization, mineral scaling and industrial material synthesis.

8.
J Chem Phys ; 145(21): 211917, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-28799341

ABSTRACT

The interplay between polymers and inorganic minerals during the formation of solids is crucial for biomineralization and bio-inspired materials, and advanced material properties can be achieved with organic-inorganic composites. By studying the reaction mechanisms, basic questions on organic-inorganic interactions and their role during material formation can be answered, enabling more target-oriented strategies in future synthetic approaches. Here, we present a comprehensive study on the hydrolysis of iron(iii) in the presence of polyaspartic acid. For the basic investigation of the formation mechanism, a titration assay was used, complemented by microscopic techniques. The polymer is shown to promote precipitation in partly hydrolyzed reaction solutions at the very early stages of the reaction by facilitating iron(iii) hydrolysis. In unhydrolyzed solutions, no significant interactions between the polymer and the inorganic solutes can be observed. We demonstrate that the hydrolysis promotion by the polymer can be understood by facilitating oxolation in olation iron(iii) pre-nucleation clusters. We propose that the adsorption of olation pre-nucleation clusters on the polymer chains and the resulting loss in dynamics and increased proximity of the reactants is the key to this effect. The resulting composite material obtained from the hydrolysis in the presence of the polymer was investigated with additional analytical techniques, namely, scanning and transmission electron microscopies, light microscopy, atomic force microscopy, zeta potential measurements, dynamic light scattering, and thermogravimetric analyses. It consists of elastic, polydisperse nanospheres, ca. 50-200 nm in diameter, and aggregates thereof, exhibiting a high polymer and water content.

9.
Cryst Growth Des ; 10(7): 2954-2959, 2010.
Article in English | MEDLINE | ID: mdl-20835404

ABSTRACT

Using in situ atomic force microscopy (AFM), we investigate the inhibition of calcium oxalate monohydrate (COM) step growth by aspartic acid-rich peptides and find that the magnitude of the effect depends on terrace lifetime. We then derive a time dependent step-pinning model in which average impurity spacing depends on the terrace lifetime as given by the ratio of step spacing to step speed. We show that the measured variation in step speed is well fit by the model and allows us to extract the characteristic peptide adsorption time. The model also predicts that a crossover in the timescales for impurity adsorption and terrace exposure leads to bistable growth dynamics described mathematically by a catastrophe. We observe this behavior experimentally both through the sudden drop in step speed to zero upon decrease of supersaturation as well as through fluctuations in step speed between the two limiting values at the point where the catastrophe occurs. We discuss the model's general applicability to macromolecular modifiers and biomineral phases.

10.
Proc Natl Acad Sci U S A ; 107(1): 11-5, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-20018743

ABSTRACT

In vitro observations have revealed major effects on the structure, growth, and composition of biomineral phases, including stabilization of amorphous precursors, acceleration and inhibition of kinetics, and alteration of impurity signatures. However, deciphering the mechanistic sources of these effects has been problematic due to a lack of tools to resolve molecular structures on mineral surfaces during growth. Here we report atomic force microscopy investigations using a system designed to maximize resolution while minimizing contact force. By imaging the growth of calcium-oxalate monohydrate under the influence of aspartic-rich peptides at single-molecule resolution, we reveal how the unique interactions of polypeptides with mineral surfaces lead to acceleration, inhibition, and switching of growth between two distinct states. Interaction with the positively charged face of calcium-oxalate monohydrate leads to formation of a peptide film, but the slow adsorption kinetics and gradual relaxation to a well-bound state result in time-dependent effects. These include a positive feedback between peptide adsorption and step inhibition described by a mathematical catastrophe that results in growth hysteresis, characterized by rapid switching from fast to near-zero growth rates for very small reductions in supersaturation. Interactions with the negatively charged face result in formation of peptide clusters that impede step advancement. The result is a competition between accelerated solute attachment and inhibition due to blocking of the steps by the clusters. The findings have implications for control of pathological mineralization and suggest artificial strategies for directing crystallization.


Subject(s)
Calcium Oxalate/chemistry , Microscopy, Atomic Force/methods , Peptides/chemistry , Adsorption , Computer Simulation , Crystallization , Humans , Kidney Calculi/chemistry , Microscopy, Atomic Force/instrumentation , Models, Molecular , Software , Surface Properties
11.
Proc Natl Acad Sci U S A ; 103(51): 19237-42, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17158220

ABSTRACT

The composition of biologic molecules isolated from biominerals suggests that control of mineral growth is linked to biochemical features. Here, we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement depends on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules. The result is a decrease in the energy barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge. This insight may contribute to an improved understanding of diverse systems of biomineralization and design of new synthetic growth modulators.


Subject(s)
Calcium Carbonate/chemistry , Crystallization/methods , Peptides/chemistry , Aspartic Acid/chemistry , Catalysis , Kinetics
12.
Proc Natl Acad Sci U S A ; 101(7): 1811-5, 2004 Feb 17.
Article in English | MEDLINE | ID: mdl-14766970

ABSTRACT

Calcium oxalate monohydrate (COM), which plays a functional role in plant physiology, is a source of chronic human disease, forming the major inorganic component of kidney stones. Understanding molecular mechanisms of biological control over COM crystallization is central to development of effective stone disease therapies and can help define general strategies for synthesizing biologically inspired materials. To date, research on COM modification by proteins and small molecules has not resolved the molecular-scale control mechanisms. Moreover, because proteins directing COM inhibition have been identified and sequenced, they provide a basis for general physiochemical investigations of biomineralization. Here, we report molecular-scale views of COM modulation by two urinary constituents, the protein osteopontin and citrate, a common therapeutic agent. Combining force microscopy with molecular modeling, we show that each controls growth habit and kinetics by pinning step motion on different faces through specific interactions in which both size and structure determine the effectiveness. Moreover, the results suggest potential for additive effects of simultaneous action by both modifiers to inhibit the overall growth of the crystal and demonstrate the utility of combining molecular imaging and modeling tools for understanding events underlying aberrant crystallization in disease.


Subject(s)
Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Citrates/chemistry , Sialoglycoproteins/metabolism , Crystallization , Kidney Calculi/chemistry , Kinetics , Microscopy, Atomic Force , Models, Molecular , Osteopontin
13.
Scanning ; 25(6): 297-9, 2003.
Article in English | MEDLINE | ID: mdl-14696978

ABSTRACT

The ability to detect small amounts of materials, especially bacterial organisms, is important for medical diagnostics and national security issues. Engineered micromechanical systems provide one approach for constructing multifunctional, highly sensitive, real-time, immunospecific biological detectors. We present qualitative detection of specific Salmonella enterica strains using a functionalized silicon nitride microcantilever. Detection is achieved due to a change in the surface stress on the cantilever surface in situ upon binding of a small number of bacteria. Scanning electron micrographs indicate that less than 25 adsorbed bacteria are required for detection.


Subject(s)
Microscopy, Atomic Force/instrumentation , Microscopy, Atomic Force/methods , Salmonella enterica/isolation & purification , Salmonella enterica/ultrastructure , Antibodies, Bacterial , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Salmonella enterica/immunology , Silicon Compounds
14.
Phys Rev Lett ; 88(25 Pt 1): 255505, 2002 Jun 24.
Article in English | MEDLINE | ID: mdl-12097097

ABSTRACT

We have investigated the effects of humidity, tip speed, and dwell time on feature size during dip pen nanolithography. Our results indicate a transition between two distinct deposition regimes occurs at a dwell time independent of humidity. While feature size increases with humidity, the relative increase is independent of dwell time. The results are described by a model that accounts for detachment and reattachment at the tip. The model suggests that, at short dwell times (high speed), the most important parameter controlling the feature size is the activation energy for thiol detachment.

15.
Opt Lett ; 26(24): 1975-7, 2001 Dec 15.
Article in English | MEDLINE | ID: mdl-18059750

ABSTRACT

The response of individual defect nanoclusters located in the bulk of a dielectric material following exposure to 355-nm, 3-ns high-power laser irradiation is investigated by use of microscopic fluorescence imaging. Experiments were carried out on KH(2)PO(4) crystals. We provide direct imaging of the reaction to an external stimulus of individual defect clusters and demonstrate a novel method of studying the dynamic behavior of bulk defects.

16.
Science ; 290(5494): 1134-7, 2000 Nov 10.
Article in English | MEDLINE | ID: mdl-11073446

ABSTRACT

Magnesium is a key determinant in CaCO3 mineralization; however, macroscopic observations have failed to provide a clear physical understanding of how magnesium modifies carbonate growth. Atomic force microscopy was used to resolve the mechanism of calcite inhibition by magnesium through molecular-scale determination of the thermodynamic and kinetic controls of magnesium on calcite formation. Comparison of directly measured step velocities to standard impurity models demonstrated that enhanced mineral solubility through magnesium incorporation inhibited calcite growth. Terrace width measurements on calcite growth spirals were consistent with a decrease in effective supersaturation due to magnesium incorporation. Ca(1-x)Mg(x)CO3 solubilities determined from microscopic observations of step dynamics can thus be linked to macroscopic measurements.

17.
Opt Lett ; 24(4): 268-70, 1999 Feb 15.
Article in English | MEDLINE | ID: mdl-18071476

ABSTRACT

A microscopic fluorescence imaging system is used to detect optically active centers located inside a transparent dielectric crystal. Defect centers in the bulk of KH(2)PO(4) crystals are imaged based on their near-infrared emission following photoexcitation. The spatial resolution of the system is 1mum in the image plane and 25mum in depth. The experimental results indicate the presence of a large number of optically active defect clusters in different KH(2)PO(4) crystals, whereas the concentration of these clusters depends on the crystal sector and growth method.

SELECTION OF CITATIONS
SEARCH DETAIL
...