Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630415

ABSTRACT

Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.


Subject(s)
Neoplasms , Triose-Phosphate Isomerase , Humans , Triose-Phosphate Isomerase/genetics , Neoplasms/drug therapy , Protein Processing, Post-Translational , Cell Cycle , Cell Proliferation
2.
J Enzyme Inhib Med Chem ; 38(1): 2231169, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37401012

ABSTRACT

Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/pharmacology , Rabeprazole/pharmacology , Rabeprazole/therapeutic use , Drug Repositioning , Chagas Disease/drug therapy , Trypanocidal Agents/pharmacology
3.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232855

ABSTRACT

Beyond the problem in public health that protist-generated diseases represent, understanding the variety of mechanisms used by these parasites to interact with the human immune system is of biological and medical relevance. Giardia lamblia is an early divergent eukaryotic microorganism showing remarkable pathogenic strategies for evading the immune system of vertebrates. Among various multifunctional proteins in Giardia, arginine deiminase is considered an enzyme that plays multiple regulatory roles during the life cycle of this parasite. One of its most important roles is the crosstalk between the parasite and host. Such a molecular "chat" is mediated in human cells by membrane receptors called Toll-like receptors (TLRs). Here, we studied the importance of the 3D structure of giardial arginine deiminase (GlADI) to immunomodulate the human immune response through TLRs. We demonstrated the direct effect of GlADI on human TLR signaling. We predicted its mode of interaction with TLRs two and four by using the AlphaFold-predicted structure of GlADI and molecular docking. Furthermore, we showed that the immunomodulatory capacity of this virulent factor of Giardia depends on the maintenance of its 3D structure. Finally, we also showed the influence of this enzyme to exert specific responses on infant-like dendritic cells.


Subject(s)
Giardia , Giardiasis , Animals , Humans , Hydrolases , Immunity , Immunomodulation , Molecular Docking Simulation , Toll-Like Receptors
4.
Sci Rep ; 12(1): 4028, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256749

ABSTRACT

Human triosephosphate isomerase (HsTIM) is a central glycolytic enzyme and is overexpressed in cancer cells with accelerated glycolysis. Triple-negative breast cancer is highly dependent on glycolysis and is typically treated with a combination of surgery, radiation therapy, and chemotherapy. Deamidated HsTIM was recently proposed as a druggable target. Although thiol-reactive drugs affect cell growth in deamidated HsTIM-complemented cells, the role of this protein as a selective target has not been demonstrated. To delve into the usefulness of deamidated HsTIM as a selective target, we assessed its natural accumulation in breast cancer cells. We found that deamidated HsTIM accumulates in breast cancer cells but not in noncancerous cells. The cancer cells are selectively programmed to undergo cell death with thiol-reactive drugs that induced the production of methylglyoxal (MGO) and advanced glycation-end products (AGEs). In vivo, a thiol-reactive drug effectively inhibits the growth of xenograft tumors with an underlying mechanism involving deamidated HsTIM. Our findings demonstrate the usefulness of deamidated HsTIM as target to develop new therapeutic strategies for the treatment of cancers and other pathologies in which this post translationally modified protein accumulates.


Subject(s)
Breast Neoplasms , Triose-Phosphate Isomerase , Female , Glycolysis , Humans , Proteins/metabolism , Pyruvaldehyde/metabolism , Sulfhydryl Compounds , Triose-Phosphate Isomerase/metabolism
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502400

ABSTRACT

Giardiasis represents a latent problem in public health due to the exceptionally pathogenic strategies of the parasite Giardia lamblia for evading the human immune system. Strains resistant to first-line drugs are also a challenge. Therefore, new antigiardial therapies are urgently needed. Here, we tested giardial arginine deiminase (GlADI) as a target against giardiasis. GlADI belongs to an essential pathway in Giardia for the synthesis of ATP, which is absent in humans. In silico docking with six thiol-reactive compounds was performed; four of which are approved drugs for humans. Recombinant GlADI was used in enzyme inhibition assays, and computational in silico predictions and spectroscopic studies were applied to follow the enzyme's structural disturbance and identify possible effective drugs. Inhibition by modification of cysteines was corroborated using Ellman's method. The efficacy of these drugs on parasite viability was assayed on Giardia trophozoites, along with the inhibition of the endogenous GlADI. The most potent drug against GlADI was assayed on Giardia encystment. The tested drugs inhibited the recombinant GlADI by modifying its cysteines and, potentially, by altering its 3D structure. Only rabeprazole and omeprazole decreased trophozoite survival by inhibiting endogenous GlADI, while rabeprazole also decreased the Giardia encystment rate. These findings demonstrate the potential of GlADI as a target against giardiasis.


Subject(s)
Giardia lamblia/drug effects , Giardiasis/drug therapy , Hydrolases/metabolism , Animals , Antiprotozoal Agents/pharmacology , Computer Simulation , Cysteine/chemistry , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , Giardia lamblia/pathogenicity , Giardiasis/immunology , Gold Sodium Thiomalate/pharmacology , Humans , Hydrolases/drug effects , Hydrolases/ultrastructure , Omeprazole/pharmacology , Proton Pump Inhibitors/pharmacology , Rabeprazole , Thiamine/analogs & derivatives , Thiamine/pharmacology , Trophozoites/drug effects
6.
Medicine (Baltimore) ; 99(40): e22442, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33019428

ABSTRACT

Delivery methods during childbirth and their related gut microbiota profiles have important impacts on health later in life, they can contribute to the development of diseases such as obesity, whose highest prevalence rate is found among the Mexican child population. Coincidentally, Mexico has one of the highest global average annual rate increase in cesarean births (C-section). Since Mexico leads the world in childhood obesity, studying the relationship between childbirth delivery methods and gut microbiota profiles in this vulnerable population may be used to identify early risk factors for obesity in other developed and developing countries. The objective of this study is to determine the association between child delivery method and gut microbiota profiles in healthy Mexican newborns.Fecal samples of 57 term infants who participated in a randomized clinical trial in 2013 to study the safety of Agave fructans in newborns, were used in this study. DNA samples were extracted and used to characterize the microbiota composition using high-throughput 16S rRNA gene sequencing. The samples were further divided based on childbirth delivery method, as well as early diet. Gut microbiota profiles were determined and analyzed using cluster analysis followed by multiple correspondence analysis.An unusual high abundance of Proteobacteria was found in the gut microbiota of all Mexican infants studied, regardless of delivery method. Feces from infants born by C-section had low levels of Bacteroidetes, high levels of Firmicutes, especially Clostridium and Enterococcus, and a strikingly high ratio of Firmicutes/Bacteroidetes (F:B). Profiles enriched in Bacteroidetes and low F:B ratios, were strongly associated with vaginal delivery.The profile of gut microbiota associated with feces from Mexican infants born by C-section, may be added to the list of boosting factors for the worrying obesity epidemic in Mexico.


Subject(s)
Cesarean Section/statistics & numerical data , Gastrointestinal Microbiome , Obesity/epidemiology , Cesarean Section/adverse effects , Feces/microbiology , Female , Humans , Infant , Infant, Newborn , Male , Mexico/epidemiology , Risk Factors
7.
Biomolecules ; 10(7)2020 07 15.
Article in English | MEDLINE | ID: mdl-32679775

ABSTRACT

Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600-1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the tim gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.


Subject(s)
Coronavirus Infections/drug therapy , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Pneumonia, Viral/drug therapy , Small Molecule Libraries/pharmacology , Triose-Phosphate Isomerase/antagonists & inhibitors , Amides/antagonists & inhibitors , Amides/metabolism , COVID-19 , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Mutation , Pandemics , Proteome/antagonists & inhibitors , Proteome/genetics , Proteome/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Small Molecule Libraries/chemistry , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism
8.
Sci Rep ; 8(1): 8591, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872223

ABSTRACT

The microsporidia are a large group of intracellular parasites with a broad range of hosts, including humans. Encephalitozoon intestinalis is the second microsporidia species most frequently associated with gastrointestinal disease in humans, especially immunocompromised or immunosuppressed individuals, including children and the elderly. The prevalence reported worldwide in these groups ranges from 0 to 60%. Currently, albendazole is most commonly used to treat microsporidiosis caused by Encephalitozoon species. However, the results of treatment are variable, and relapse can occur. Consequently, efforts are being directed toward identifying more effective drugs for treating microsporidiosis, and the study of new molecular targets appears promising. These parasites lack mitochondria, and oxidative phosphorylation therefore does not occur, which suggests the enzymes involved in glycolysis as potential drug targets. Here, we have for the first time characterized the glycolytic enzyme triosephosphate isomerase of E. intestinalis at the functional and structural levels. Our results demonstrate the mechanisms of inactivation of this enzyme by thiol-reactive compounds. The most striking result of this study is the demonstration that established safe drugs such as omeprazole, rabeprazole and sulbutiamine can effectively inactivate this microsporidial enzyme and might be considered as potential drugs for treating this important disease.


Subject(s)
Albendazole/therapeutic use , Fungal Proteins/antagonists & inhibitors , Microsporidia/drug effects , Microsporidiosis/drug therapy , Triose-Phosphate Isomerase/antagonists & inhibitors , Amino Acid Sequence , Encephalitozoon/drug effects , Encephalitozoon/enzymology , Encephalitozoon/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/microbiology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Fungal/drug effects , Humans , Microsporidia/enzymology , Microsporidia/genetics , Microsporidiosis/microbiology , Omeprazole/therapeutic use , Rabeprazole/therapeutic use , Sequence Homology, Amino Acid , Thiamine/analogs & derivatives , Thiamine/therapeutic use , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
9.
Mol Cell Biol ; 36(16): 2195-205, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27215386

ABSTRACT

HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Allosteric Regulation , Animals , Cell Cycle Proteins , Humans , Nuclear Proteins/chemistry , Phosphorylation , Protein Domains , Protein Unfolding , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins c-mdm2/chemistry , RNA, Messenger/metabolism , Substrate Specificity , Tumor Suppressor Protein p53/metabolism
10.
Anat Rec (Hoboken) ; 299(5): 549-56, 2016 May.
Article in English | MEDLINE | ID: mdl-26833978

ABSTRACT

The nucleolus is a nuclear organelle involved in ribosome biogenesis. In most eukaryotes this structure disperses during prophase through anaphase and reorganizes at telophase by a process known as nucleologenesis. This process involves new transcription of ribosomal DNA at the nucleolar organizer region and the formation of prenucleolar bodies fusing to it. In Giardia lamblia, for a long time considered the only anucleolated eukaryote, a very small nucleolus has been recently described. In order to evaluate whether nucleologenesis is also present in Giardia, we analyzed the distribution of nucleolar material during telophase using different light and electron microscopy techniques including silver staining for the nucleolar organizer. Results indicate that in G. lamblia, nucleolar elements persist mainly as an intranuclear peripheral organelle during all stages of division, including telophase, however, no prenucleolar bodies are detected in the nucleoplasm. Therefore, in the parasite, nucleolar material is present throughout cell division including telophase and formation of prenucleolar bodies may not be required for nucleologenesis.


Subject(s)
Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Giardia lamblia/metabolism , Mitosis/physiology , Nucleolus Organizer Region/metabolism , Cell Nucleolus/chemistry , Cell Nucleolus/ultrastructure , Cell Nucleus/chemistry , Cell Nucleus/ultrastructure , DNA, Ribosomal/metabolism , Giardia lamblia/cytology , Giardia lamblia/ultrastructure , Microscopy, Electron, Transmission , Nuclear Proteins/metabolism , Nucleolus Organizer Region/chemistry , Nucleolus Organizer Region/ultrastructure
11.
Gene ; 581(1): 21-30, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-26778241

ABSTRACT

The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia.


Subject(s)
Gene Expression Regulation , Genes, Essential , Giardia lamblia/genetics , Animals , Antiprotozoal Agents/pharmacology , DNA Primers , Giardia lamblia/drug effects , Metronidazole/pharmacology , Nitro Compounds , Real-Time Polymerase Chain Reaction , Thiazoles/pharmacology
12.
Biochim Biophys Acta ; 1860(1 Pt A): 97-107, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26518348

ABSTRACT

BACKGROUND: Proton pump inhibitors (PPIs) are extensively used in clinical practice because of their effectiveness and safety. Omeprazole is one of the best-selling drugs worldwide and, with other PPIs, has been proposed to be potential drugs for the treatment of several diseases. We demonstrated that omeprazole shows cytotoxic effects in Giardia and concomitantly inactivates giardial triosephosphate isomerase (GlTIM). Therefore, we evaluated the efficiency of commercially available PPIs to inactivate this enzyme. METHODS: We assayed the effect of PPIs on the GlTIM WT, single Cys mutants, and the human counterpart, following enzyme activity, thermal stability, exposure of hydrophobic regions, and susceptibility to limited proteolysis. RESULTS: PPIs efficiently inactivated GlTIM; however, rabeprazole was the best inactivating drug and was nearly ten times more effective. The mechanism of inactivation by PPIs was through the modification of the Cys 222 residue. Moreover, there are important changes at the structural level, the thermal stability of inactivated-GlTIM was drastically diminished and the structural rigidity was lost, as observed by the exposure of hydrophobic regions and their susceptibility to limited proteolysis. CONCLUSIONS: Our results demonstrate that rabeprazole is the most potent PPI for GlTIM inactivation and that all PPIs tested have substantial abilities to alter GITIM at the structural level, causing serious damage. GENERAL SIGNIFICANCE: This is the first report demonstrating the effectiveness of commercial PPIs on a glycolytic parasitic enzyme, with structural features well known. This study is a step forward in the use and understanding the implicated mechanisms of new antigiardiasic drugs safe in humans.


Subject(s)
Drug Design , Giardia lamblia/drug effects , Proton Pump Inhibitors/pharmacology , Triose-Phosphate Isomerase/antagonists & inhibitors , Enzyme Stability , Giardia lamblia/enzymology , Humans , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/physiology
13.
Int J Mol Sci ; 16(12): 28657-68, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26633385

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.


Subject(s)
Genetic Variation , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/genetics , Models, Molecular , Molecular Conformation , Mutation , Catalysis , Enzyme Activation , Gene Expression , Glucosephosphate Dehydrogenase/metabolism , Humans , Kinetics , Protein Stability , Recombinant Proteins , Structure-Activity Relationship , Thermodynamics
14.
PLoS One ; 10(4): e0123379, 2015.
Article in English | MEDLINE | ID: mdl-25884638

ABSTRACT

Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM), an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D) were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.


Subject(s)
Amides/metabolism , Triose-Phosphate Isomerase/metabolism , Humans , Mutagenesis, Site-Directed , Protein Processing, Post-Translational , Protein Structure, Secondary , Triose-Phosphate Isomerase/genetics
15.
Int J Mol Sci ; 16(1): 1293-311, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25574602

ABSTRACT

Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.


Subject(s)
Alcohol Dehydrogenase/metabolism , Ethanol/metabolism , Gluconacetobacter/enzymology , Acetates/analysis , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/isolation & purification , Aldehydes/analysis , Amino Acid Sequence , Biocatalysis , Carbon Radioisotopes/chemistry , Gas Chromatography-Mass Spectrometry , Isotope Labeling , Kinetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Oxidation-Reduction , Protein Denaturation , Temperature
16.
Int J Mol Sci ; 15(11): 21179-201, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25407525

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide, causing a wide spectrum of conditions with severity classified from the mildest (Class IV) to the most severe (Class I). To correlate mutation sites in the G6PD with the resulting phenotypes, we studied four naturally occurring G6PD variants: Yucatan, Nashville, Valladolid and Mexico City. For this purpose, we developed a successful over-expression method that constitutes an easier and more precise method for obtaining and characterizing these enzymes. The k(cat) (catalytic constant) of all the studied variants was lower than in the wild-type. The structural rigidity might be the cause and the most evident consequence of the mutations is their impact on protein stability and folding, as can be observed from the protein yield, the T50 (temperature where 50% of its original activity is retained) values, and differences on hydrophobic regions. The mutations corresponding to more severe phenotypes are related to the structural NADP+ region. This was clearly observed for the Classes III and II variants, which became more thermostable with increasing NADP+, whereas the Class I variants remained thermolabile. The mutations produce repulsive electric charges that, in the case of the Yucatan variant, promote increased disorder of the C-terminus and consequently affect the binding of NADP+, leading to enzyme instability.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/enzymology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Mutation , Enzyme Stability , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Humans , Models, Molecular , Phenotype , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature
17.
Antimicrob Agents Chemother ; 58(12): 7072-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223993

ABSTRACT

Giardiasis is highly prevalent in the developing world, and treatment failures with the standard drugs are common. This work deals with the proposal of omeprazole as a novel antigiardial drug, focusing on a giardial glycolytic enzyme used to follow the cytotoxic effect at the molecular level. We used recombinant technology and enzyme inactivation to demonstrate the capacity of omeprazole to inactivate giardial triosephosphate isomerase, with no adverse effects on its human counterpart. To establish the specific target in the enzyme, we used single mutants of every cysteine residue in triosephosphate isomerase. The effect on cellular triosephosphate isomerase was evaluated by following the remnant enzyme activity on trophozoites treated with omeprazole. The interaction of omeprazole with giardial proteins was analyzed by fluorescence spectroscopy. The susceptibility to omeprazole of drug-susceptible and drug-resistant strains of Giardia lamblia was evaluated to demonstrate its potential as a novel antigiardial drug. Our results demonstrate that omeprazole inhibits giardial triosephosphate isomerase in a species-specific manner through interaction with cysteine at position 222. Omeprazole enters the cytoplasmic compartment of the trophozoites and inhibits cellular triosephosphate isomerase activity in a dose-dependent manner. Such inhibition takes place concomitantly with the cytotoxic effect caused by omeprazole on trophozoites. G. lamblia triosephosphate isomerase (GlTIM) is a cytoplasmic protein which can help analyses of how omeprazole works against the proteins of this parasite and in the effort to understand its mechanism of cytotoxicity. Our results demonstrate the mechanism of giardial triosephosphate isomerase inhibition by omeprazole and show that this drug is effective in vitro against drug-resistant and drug-susceptible strains of G. lamblia.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Giardia lamblia/drug effects , Omeprazole/pharmacology , Protozoan Proteins/antagonists & inhibitors , Triose-Phosphate Isomerase/antagonists & inhibitors , Trophozoites/drug effects , Albendazole/pharmacology , Axenic Culture , Cysteine/chemistry , Cysteine/metabolism , Dose-Response Relationship, Drug , Drug Resistance , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Giardia lamblia/enzymology , Giardia lamblia/growth & development , Giardia lamblia/isolation & purification , Humans , Metronidazole/pharmacology , Mutation , Nitro Compounds , Parasitic Sensitivity Tests , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Thiazoles/pharmacology , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism , Trophozoites/enzymology , Trophozoites/growth & development
18.
Protein J ; 32(7): 585-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24146346

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first step of the pentose phosphate pathway. In erythrocytes, the functionality of the pathway is crucial to protect these cells against oxidative damage. G6PD deficiency is the most frequent enzymopathy in humans with a global prevalence of 4.9 %. The clinical picture is characterized by chronic or acute hemolysis in response to oxidative stress, which is related to the low cellular activity of G6PD in red blood cells. The disease is heterogeneous at genetic level with around 160 mutations described, mostly point mutations causing single amino acid substitutions. The biochemical studies aimed to describe the detrimental effects of mutations on the functional and structural properties of human G6PD are indispensable to understand the molecular physiopathology of this disease. Therefore, reliable systems for efficient expression and purification of the protein are highly desirable. In this work, human G6PD was heterologously expressed in Escherichia coli and purified by immobilized metal affinity chromatography in a single chromatographic step. The structural and functional characterization indicates that His-tagged G6PD resembles previous preparations of recombinant G6PD. In contrast with previous protein yield systems, our method is based on commonly available resources and fully accessible laboratory equipment; therefore, it can be readily implemented.


Subject(s)
Glucosephosphate Dehydrogenase/isolation & purification , Glucosephosphate Dehydrogenase/metabolism , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Chromatography, Affinity , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/genetics , Histidine , Humans , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
19.
Biochim Biophys Acta ; 1834(12): 2702-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24056040

ABSTRACT

The deficiency of human triosephosphate isomerase (HsTIM) generates neurological alterations, cardiomyopathy and premature death. The mutation E104D is the most frequent cause of the disease. Although the wild type and mutant exhibit similar kinetic parameters, it has been shown that the E104D substitution induces perturbation of an interfacial water network that, in turn, reduces the association constant between subunits promoting enzyme inactivation. To gain further insight into the effects of the mutation on the structure, stability and function of the enzyme, we measured the sensitivity of recombinant E104D mutant and wild type HsTIM to limited proteolysis. The mutation increases the susceptibility to proteolysis as consequence of the loss of rigidity of its overall 3-D structure. Unexpectedly, it was observed that proteolysis of wild type HsTIM generated two different stable nicked dimers. One was formed in relatively short times of incubation with proteinase K; as shown by spectrometric and crystallographic data, it corresponded to a dimer containing a nicked monomer and an intact monomer. The formation of the other nicked species requires relatively long incubation times with proteinase K and corresponds to a dimer with two clipped subunits. The first species retains 50% of the original activity, whereas the second species is inactive. Collectively, we found that the E104D mutant is highly susceptible to proteolysis, which in all likelihood contributes to the pathogenesis of enzymopathy. In addition, the proteolysis data on wild type HsTIM illustrate an asymmetric conduct of the two monomers.


Subject(s)
Amino Acid Substitution , Mutation, Missense , Protein Multimerization , Proteolysis , Triose-Phosphate Isomerase/chemistry , Anemia, Hemolytic, Congenital Nonspherocytic/enzymology , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Carbohydrate Metabolism, Inborn Errors/enzymology , Carbohydrate Metabolism, Inborn Errors/genetics , Enzyme Stability/genetics , Humans , Protein Structure, Quaternary , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
20.
PLoS One ; 8(7): e69031, 2013.
Article in English | MEDLINE | ID: mdl-23894402

ABSTRACT

BACKGROUND: We have previously proposed triosephosphate isomerase of Giardia lamblia (GlTIM) as a target for rational drug design against giardiasis, one of the most common parasitic infections in humans. Since the enzyme exists in the parasite and the host, selective inhibition is a major challenge because essential regions that could be considered molecular targets are highly conserved. Previous biochemical evidence showed that chemical modification of the non-conserved non-catalytic cysteine 222 (C222) inactivates specifically GlTIM. The inactivation correlates with the physicochemical properties of the modifying agent: addition of a non-polar, small chemical group at C222 reduces the enzyme activity by one half, whereas negatively charged, large chemical groups cause full inactivation. RESULTS: In this work we used mutagenesis to extend our understanding of the functional and structural effects triggered by modification of C222. To this end, six GlTIM C222 mutants with side chains having diverse physicochemical characteristics were characterized. We found that the polarity, charge and volume of the side chain in the mutant amino acid differentially alter the activity, the affinity, the stability and the structure of the enzyme. The data show that mutagenesis of C222 mimics the effects of chemical modification. The crystallographic structure of C222D GlTIM shows the disruptive effects of introducing a negative charge at position 222: the mutation perturbs loop 7, a region of the enzyme whose interactions with the catalytic loop 6 are essential for TIM stability, ligand binding and catalysis. The amino acid sequence of TIM in phylogenetic diverse groups indicates that C222 and its surrounding residues are poorly conserved, supporting the proposal that this region is a good target for specific drug design. CONCLUSIONS: The results demonstrate that it is possible to inhibit species-specifically a ubiquitous, structurally highly conserved enzyme by modification of a non-conserved, non-catalytic residue through long-range perturbation of essential regions.


Subject(s)
Giardia lamblia/enzymology , Mutagenesis, Site-Directed , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism , Biocatalysis , Conserved Sequence , Crystallography, X-Ray , Enzyme Stability , Glycolates/metabolism , Kinetics , Models, Molecular , Mutation , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrum Analysis , Triose-Phosphate Isomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...