Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38365103

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is characterized by episodic mood dysregulation, although a significant portion of patients suffer persistent cognitive impairment during euthymia. Previous magnetic resonance imaging (MRI) research suggests BD patients may have accelerated brain aging, observed as lower grey matter volumes. How these neurostructural alterations are related to the cognitive profile of BD is unclear. METHODS: We aim to explore this relationship in euthymic BD patients with multimodal structural neuroimaging. A sample of 27 euthymic BD patients and 24 healthy controls (HC) underwent structural grey matter MRI and diffusion-weighted imaging (DWI). BD patient's cognition was also assessed. FreeSurfer algorithms were used to obtain estimations of regional grey matter volumes. White matter pathways were reconstructed using TRACULA, and four diffusion metrics were extracted. ANCOVA models were performed to compare BD patients and HC values of regional grey matter volume and diffusion metrics. Global brain measures were also compared. Bivariate Pearson correlations were explored between significant brain results and five cognitive domains. RESULTS: Euthymic BD patients showed higher ventricular volume (F(1, 46) = 6.04; p = 0.018) and regional grey matter volumes in the left fusiform (F(1, 46) = 15.03; pFDR = 0.015) and bilateral parahippocampal gyri compared to HC (L: F(1, 46) = 12.79, pFDR = 0.025/ R: F(1, 46) = 15.25, pFDR = 0.015). Higher grey matter volumes were correlated with greater executive function (r = 0.53, p = 0.008). LIMITATIONS: We evaluated a modest sample size with concurrent pharmacological treatment. CONCLUSIONS: Higher medial temporal volumes in euthymic BD patients may be a potential signature of brain resilience and cognitive adaptation to a putative illness neuroprogression. This knowledge should be integrated into further efforts to implement imaging into BD clinical management.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/complications , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Gray Matter , Cerebral Cortex , Brain/metabolism , Temporal Lobe , Magnetic Resonance Imaging , Cognition
SELECTION OF CITATIONS
SEARCH DETAIL
...