Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 15(5): e0009414, 2021 05.
Article in English | MEDLINE | ID: mdl-34019548

ABSTRACT

In Latin America, there has been tremendous progress towards eliminating canine rabies. Major components of rabies elimination programs leading to these successes have been constant and regular surveillance for rabid dogs and uninterrupted yearly mass dog vaccination campaigns. Unfortunately, vital measures to control COVID-19 have had the negative trade-off of jeopardizing these rabies elimination and prevention activities. We aimed to assess the effect of interrupting canine rabies surveillance and mass dog vaccination campaigns on rabies trends. We built a deterministic compartment model of dog rabies dynamics to create a conceptual framework for how different disruptions may affect rabies virus transmission. We parameterized the model for conditions found in Arequipa, Peru, a city with active rabies virus transmission. We examined our results over a range of plausible values for R0 (1.36-2.0). Also, we prospectively evaluated surveillance data during the pandemic to detect temporal changes. Our model suggests that a decrease in canine vaccination coverage as well as decreased surveillance could lead to a sharp rise in canine rabies within months. These results were consistent over all plausible values of R0. Surveillance data from late 2020 and early 2021 confirms that in Arequipa, Peru, rabies cases are on an increasing trajectory. The rising rabies trends in Arequipa, if indicative to the region as whole, suggest that the achievements made in Latin America towards the elimination of dog-mediated human rabies may be in jeopardy.


Subject(s)
COVID-19/epidemiology , Dog Diseases/epidemiology , Mass Vaccination/veterinary , Pandemics , Rabies virus/immunology , Rabies/epidemiology , SARS-CoV-2/physiology , Animals , COVID-19/virology , Disease Eradication , Dog Diseases/prevention & control , Dog Diseases/virology , Dogs , Humans , Latin America/epidemiology , Peru/epidemiology , Rabies/prevention & control , Rabies/virology , Rabies Vaccines/administration & dosage , Vaccination Coverage
2.
Am J Trop Med Hyg ; 103(3): 1247-1257, 2020 09.
Article in English | MEDLINE | ID: mdl-32662391

ABSTRACT

Since its reintroduction in 2015, rabies has been established as an enzootic disease among the dog population of Arequipa, Peru. Given the unknown rate of dog bites, the risk of human rabies transmission is concerning. Our objective was to estimate the rate of dog bites in the city and to identify factors associated with seeking health care in a medical facility for wound care and rabies prevention follow-up. To this end, we conducted a door-to-door survey with 4,370 adults in 21 urban and 21 peri-urban communities. We then analyzed associations between seeking health care following dog bites and various socioeconomic factors, stratifying by urban and peri-urban localities. We found a high annual rate of dog bites in peri-urban communities (12.4%), which was 2.6 times higher than that in urban areas (4.8%). Among those who were bitten, the percentage of people who sought medical treatment was almost twice as high in urban areas (39.1%) as in peri-urban areas (21.4%).


Subject(s)
Bites and Stings/epidemiology , Dog Diseases/epidemiology , Patient Acceptance of Health Care/statistics & numerical data , Rabies Vaccines/therapeutic use , Rabies/epidemiology , Socioeconomic Factors , Adult , Animals , Bites and Stings/virology , Demography , Dog Diseases/virology , Dogs , Epidemiological Monitoring , Female , Health Facilities , Humans , Male , Middle Aged , Peru/epidemiology , Post-Exposure Prophylaxis/statistics & numerical data , Rabies/virology , Risk , Surveys and Questionnaires , Urban Population , Zoonoses
3.
Prev Vet Med ; 178: 104978, 2020 May.
Article in English | MEDLINE | ID: mdl-32302776

ABSTRACT

In 2015, a case of canine rabies in Arequipa, Peru indicated the re-emergence of rabies virus in the city. Despite mass dog vaccination campaigns across the city and reactive ring vaccination and other control activities around positive cases (e.g. elimination of unowned dogs), the outbreak has spread. Here we explore how the urban landscape of Arequipa affects the movement patterns of free-roaming dogs, the main reservoirs of the rabies virus in the area. We tracked 23 free-roaming dogs using Global Positioning System (GPS) collars. We analyzed the spatio-temporal GPS data using the time- local convex hull method. Dog movement patterns varied across local environments. We found that water channels, an urban feature of Arequipa that are dry most of the year, promote movement. Dogs that used the water channels extensively move on average 7 times further (p = 0.002) and 1.2 times more directionally (p = 0.027) than dogs that do not use the water channels at all. They were also 1.3 times faster on average, but this difference was not statistically significant (p = 0.197). Our findings suggest that water channels can be used by dogs as 'highways' to transverse the city and have the potential to spread disease far beyond the radius of control practices. Control efforts should focus on a robust vaccination campaign attuned to the geography of the city, and not limited to small-scale rings surrounding cases.


Subject(s)
Animal Distribution , Dog Diseases/prevention & control , Dogs/physiology , Environment , Movement , Rabies/veterinary , Animals , Cities , Geographic Information Systems , Peru , Rabies/prevention & control
4.
PLoS Negl Trop Dis ; 13(8): e0007600, 2019 08.
Article in English | MEDLINE | ID: mdl-31369560

ABSTRACT

To control and prevent rabies in Latin America, mass dog vaccination campaigns (MDVC) are implemented mainly through fixed-location vaccination points: owners have to bring their dogs to the vaccination points where they receive the vaccination free of charge. Dog rabies is still endemic in some Latin-American countries and high overall dog vaccination coverage and even distribution of vaccinated dogs are desired attributes of MDVC to halt rabies virus transmission. In Arequipa, Peru, we conducted a door-to-door post-campaign survey on >6,000 houses to assess the placement of vaccination points on these two attributes. We found that the odds of participating in the campaign decreased by 16% for every 100 m from the owner's house to the nearest vaccination point (p = 0.041) after controlling for potential covariates. We found social determinants associated with participating in the MDVC: for each child under 5 in the household, the odds of participating in the MDVC decreased by 13% (p = 0.032), and for each decade less lived in the area, the odds of participating in the MDVC decreased by 8% (p<0.001), after controlling for distance and other covariates. We also found significant spatial clustering of unvaccinated dogs over 500 m from the vaccination points, which created pockets of unvaccinated dogs that may sustain rabies virus transmission. Understanding the barriers to dog owners' participation in community-based dog-vaccination programs will be crucial to implementing effective zoonotic disease preventive activities. Spatial and social elements of urbanization play an important role in coverage of MDVC and should be considered during their planning and evaluation.


Subject(s)
Dog Diseases/prevention & control , Immunization Programs , Mass Vaccination/veterinary , Rabies Vaccines , Rabies/prevention & control , Vaccination Coverage , Animals , Child, Preschool , Dog Diseases/transmission , Dogs , Family Characteristics , Humans , Multivariate Analysis , Odds Ratio , Peru , Rabies/transmission , Rabies virus/immunology , Regression Analysis , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...