Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 43(6): 241-253, 2023.
Article in English | MEDLINE | ID: mdl-37184381

ABSTRACT

Activity of the myogenic regulatory protein myocyte enhancer factor-2 (MEF2) is modulated by post-translational modification. We investigated the in vivo phosphorylation of Drosophila MEF2, and identified serine 98 (S98) as a phosphorylated residue. Phospho-mimetic (S98E) and phospho-null (S98A) isoforms of MEF2 did not differ from wild-type in their activity in vitro, so we used CRISPR/Cas9 to generate an S98A allele of the endogenous gene. In mutant larvae we observed phenotypes characteristic of reduced MEF2 function, including reduced body wall muscle size and reduced expression of myofibrillar protein genes; conversely,S98A homozygotes showed enhanced MEF2 function through muscle differentiation within the adult myoblasts associated with the wing imaginal disc. In adults, S98A homozygotes were viable with normal mobility, yet showed patterning defects in muscles that were enhanced when the S98A allele was combined with a Mef2 null allele. Overall our data indicate that blocking MEF2 S98 phosphorylation in myoblasts enhances its myogenic capability, whereas blocking S98 phosphorylation in differentiating muscles attenuates MEF2 function. Our studies are among the first to assess the functional significance of MEF2 phosphorylation sites in the intact animal, and suggest that the same modification can have profoundly different effects upon MEF2 function depending upon the developmental context.


Subject(s)
Drosophila Proteins , Drosophila , MEF2 Transcription Factors , Muscle Development , Animals , Gene Expression Regulation, Developmental , MEF2 Transcription Factors/genetics , Muscle Cells , Muscle Development/genetics , Phosphorylation , Drosophila Proteins/genetics
2.
Development ; 146(7)2019 04 04.
Article in English | MEDLINE | ID: mdl-30872277

ABSTRACT

Serum response factor (SRF) has an established role in controlling actin homeostasis in mammalian cells, yet its role in non-vertebrate muscle development has remained enigmatic. Here, we demonstrate that the single Drosophila SRF ortholog, termed Blistered (Bs), is expressed in all adult muscles, but Bs is required for muscle organization only in the adult indirect flight muscles. Bs is a direct activator of the flight muscle actin gene Act88F, via a conserved promoter-proximal binding site. However, Bs only activates Act88F expression in the context of the flight muscle regulatory program provided by the Pbx and Meis orthologs Extradenticle and Homothorax, and appears to function in a similar manner to mammalian SRF in muscle maturation. These studies place Bs in a regulatory framework where it functions to sustain the flight muscle phenotype in Drosophila Our studies uncover an evolutionarily ancient role for SRF in regulating muscle actin expression, and provide a model for how SRF might function to sustain muscle fate downstream of pioneer factors.


Subject(s)
Drosophila Proteins/metabolism , Serum Response Factor/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Muscle, Skeletal/metabolism , Promoter Regions, Genetic/genetics , Serum Response Factor/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...