Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 41(12): 2209-2218, 2020 12.
Article in English | MEDLINE | ID: mdl-33154071

ABSTRACT

BACKGROUND AND PURPOSE: The secondary progressive phase of multiple sclerosis is characterised by disability progression due to processes that lead to neurodegeneration. Surrogate markers such as those derived from MRI are beneficial in understanding the pathophysiology that drives disease progression and its relationship to clinical disability. We undertook a 1H-MRS imaging study in a large secondary progressive MS (SPMS) cohort, to examine whether metabolic markers of brain injury are associated with measures of disability, both physical and cognitive. MATERIALS AND METHODS: A cross-sectional analysis of individuals with secondary-progressive MS was performed in 119 participants. They underwent 1H-MR spectroscopy to obtain estimated concentrations and ratios to total Cr for total NAA, mIns, Glx, and total Cho in normal-appearing WM and GM. Clinical outcome measures chosen were the following: Paced Auditory Serial Addition Test, Symbol Digit Modalities Test, Nine-Hole Peg Test, Timed 25-foot Walk Test, and the Expanded Disability Status Scale. The relationship between these neurometabolites and clinical disability measures was initially examined using Spearman rank correlations. Significant associations were then further analyzed in multiple regression models adjusting for age, sex, disease duration, T2 lesion load, normalized brain volume, and occurrence of relapses in 2 years preceding study entry. RESULTS: Significant associations, which were then confirmed by multiple linear regression, were found in normal-appearing WM for total NAA (tNAA)/total Cr (tCr) and the Nine-Hole Peg Test (ρ = 0.23; 95% CI, 0.06-0.40); tNAA and tNAA/tCr and the Paced Auditory Serial Addition Test (ρ = 0.21; 95% CI, 0.03-0.38) (ρ = 0.19; 95% CI, 0.01-0.36); mIns/tCr and the Paced Auditory Serial Addition Test, (ρ = -0.23; 95% CI, -0.39 to -0.05); and in GM for tCho and the Paced Auditory Serial Addition Test (ρ = -0.24; 95% CI, -0.40 to -0.06). No other GM or normal-appearing WM relationships were found with any metabolite, with associations found during initial correlation testing losing significance after multiple linear regression analysis. CONCLUSIONS: This study suggests that metabolic markers of neuroaxonal integrity and astrogliosis in normal-appearing WM and membrane turnover in GM may act as markers of disability in secondary-progressive MS.


Subject(s)
Aspartic Acid/analogs & derivatives , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Neuroimaging/methods , Proton Magnetic Resonance Spectroscopy/methods , Adult , Amiloride/therapeutic use , Aspartic Acid/analysis , Biomarkers/analysis , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Disability Evaluation , Disease Progression , Double-Blind Method , Female , Fluoxetine/therapeutic use , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/drug therapy , Neuroprotective Agents/therapeutic use , Protons , Riluzole/therapeutic use
2.
Nature ; 550(7675): 199-203, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29022590

ABSTRACT

Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...