Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Heart Fail ; 22(8): 1315-1341, 2020 08.
Article in English | MEDLINE | ID: mdl-32469155

ABSTRACT

Cardiogenic shock (CS) is a complex multifactorial clinical syndrome with extremely high mortality, developing as a continuum, and progressing from the initial insult (underlying cause) to the subsequent occurrence of organ failure and death. There is a large spectrum of CS presentations resulting from the interaction between an acute cardiac insult and a patient's underlying cardiac and overall medical condition. Phenotyping patients with CS may have clinical impact on management because classification would support initiation of appropriate therapies. CS management should consider appropriate organization of the health care services, and therapies must be given to the appropriately selected patients, in a timely manner, whilst avoiding iatrogenic harm. Although several consensus-driven algorithms have been proposed, CS management remains challenging and substantial investments in research and development have not yielded proof of efficacy and safety for most of the therapies tested, and outcome in this condition remains poor. Future studies should consider the identification of the new pathophysiological targets, and high-quality translational research should facilitate incorporation of more targeted interventions in clinical research protocols, aimed to improve individual patient outcomes. Designing outcome clinical trials in CS remains particularly challenging in this critical and very costly scenario in cardiology, but information from these trials is imperiously needed to better inform the guidelines and clinical practice. The goal of this review is to summarize the current knowledge concerning the definition, epidemiology, underlying causes, pathophysiology and management of CS based on important lessons from clinical trials and registries, with a focus on improving in-hospital management.


Subject(s)
Cardiology , Heart Failure , Shock, Cardiogenic , Consensus , Heart Failure/epidemiology , Heart Failure/therapy , Humans , Registries , Shock, Cardiogenic/epidemiology , Shock, Cardiogenic/therapy
2.
Crit Care ; 23(Suppl 1): 197, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31200781

ABSTRACT

Progress toward determining the true worth of ongoing practices or value of recent innovations can be glacially slow when we insist on following the conventional stepwise scientific pathway. Moreover, a widely accepted but flawed conceptual paradigm often proves difficult to challenge, modify or reject. Yet, most experienced clinicians, educators and clinical scientists privately entertain untested ideas about how care could or should be improved, even if the supporting evidence base is currently thin or non-existent. This symposium encouraged experts to share such intriguing but unproven concepts, each based upon what the speaker considered a logical but unproven rationale. Such free interchange invited dialog that pointed toward new or neglected lines of research needed to improve care of the critically ill. In this summary of those presentations, a brief background outlines the rationale for each novel and deliberately provocative unconfirmed idea endorsed by the presenter.


Subject(s)
Critical Care/trends , Critical Illness/therapy , Forecasting , Humans
3.
Curr Opin Crit Care ; 9(4): 271-8, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12883281

ABSTRACT

The main clinical characteristics of sepsis and septic shock are derangements of cardiocirculatory and respiratory function. Additionally, profound alterations in metabolic pathways occur leading to hypermetabolism, enhanced energy expenditure, and insulin resistance. The clinical hallmarks are hyperglycemia, hyperlactatemia, and enhanced protein catabolism. These metabolic alterations are even more pronounced during sepsis as a result of cytokine release and subsequent induction of inflammatory pathways. Increased oxygen demands from mitochondrial oxygen utilization and oxygen consumption related to oxygen radical formation may contribute to hypermetabolism. In addition, mitochondrial dysfunction with impaired cellular respiration may be present. Mainstay therapeutic interventions for hemodynamic stabilization are adequate volume resuscitation and vasoactive agents, which, however, have additional impact on metabolic activity. Therefore, beyond hemodynamic effects, specific drug-related metabolic alterations need to be considered for optimal treatment during sepsis. This review gives an overview of the typical metabolic alterations during sepsis and septic shock and highlights the impact of vasoactive therapy on metabolism.


Subject(s)
Adrenergic Agonists/therapeutic use , Catecholamines/therapeutic use , Critical Illness , Energy Metabolism/drug effects , Sepsis/metabolism , Epoprostenol/therapeutic use , Glucose/metabolism , Humans , Lactates/metabolism , Mitochondria/physiology , Sepsis/physiopathology , Vasopressins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...