Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 10(1): 35, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261574

ABSTRACT

BACKGROUND: The Cubresa Spark is a novel benchtop silicon-photomultiplier (SiPM)-based preclinical SPECT system. SiPMs in SPECT significantly improve resolution and reduce detector size compared to preclinical cameras with photomultiplier tubes requiring highly magnifying collimators. The NEMA NU 1 Standard for Performance Measurements of Gamma Cameras provides methods that can be readily applied or extended to characterize preclinical cameras with minor modifications. The primary objective of this study is to characterize the Spark according to the NEMA NU 1-2018 standard to gain insight into its nuclear medicine imaging capabilities. The secondary objective is to validate a GATE Monte Carlo simulation model of the Spark for use in preclinical SPECT studies. METHODS: NEMA NU 1-2018 guidelines were applied to characterize the Spark's intrinsic, system, and tomographic performance with single- and multi-pinhole collimators. Phantoms were fabricated according to NEMA specifications with deviations involving high-resolution modifications. GATE was utilized to model the detector head with the single-pinhole collimator, and NEMA measurements were employed to tune and validate the model. Single-pinhole and multi-pinhole SPECT data were reconstructed with the Software for Tomographic Image Reconstruction and HiSPECT, respectively. RESULTS: The limiting intrinsic resolution was measured as 0.85 mm owing to a high-resolution SiPM array combined with a 3 mm-thick scintillation crystal. The average limiting tomographic resolution was 1.37 mm and 1.19 mm for the single- and multi-pinhole collimators, respectively, which have magnification factors near unity at the center of rotation. The maximum observed count rate was 15,400 cps, and planar sensitivities of 34 cps/MBq and 150 cps/MBq were measured at the center of rotation for the single- and multi-pinhole collimators, respectively. All simulated tests agreed well with measurement, where the most considerable deviations were below 7%. CONCLUSIONS: NEMA NU 1-2018 standards determined that a SiPM detector mitigates the need for highly magnifying pinhole collimators while preserving detailed information in projection images. Measured and simulated NEMA results were highly comparable with differences on the order of a few percent, confirming simulation accuracy and validating the GATE model. Of the collimators initially provided with the Spark, the multi-pinhole collimator offers high resolution and sensitivity for organ-specific imaging of small animals, and the single-pinhole collimator enables high-resolution whole-body imaging of small animals.

2.
Sci Rep ; 12(1): 22174, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550188

ABSTRACT

Neuroimaging with [2,2-dimethyl-3-[(2R,3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(2R,3E)-3-hydroxyiminobutan-2-yl]azanide;oxo(99Tc)technetium-99(3+) ([99mTc]HMPAO) single photon emission computed tomography (SPECT) is used in Alzheimer's disease (AD) to evaluate regional cerebral blood flow (rCBF). Hypoperfusion in select temporoparietal regions has been observed in human AD. However, it is unknown whether AD hypoperfusion signatures are also present in the 5XFAD mouse model. The current study was undertaken to compare baseline brain perfusion between 5XFAD and wild-type (WT) mice using [99mTc]HMPAO SPECT and determine whether hypoperfusion is recapitulated in 5XFAD mice. 5XFAD and WT mice underwent a 45 min SPECT scan, 20 min after [99mTc]HMPAO administration. Whole brain and regional standardized uptake values (SUV) and regional relative standardized uptake values (SUVR) with whole brain reference were compared between groups. Brain perfusion was similar between WT and 5XFAD brains. Whole brain [99mTc]HMPAO retention revealed no significant difference in SUV (5XFAD, 0.372 ± 0.762; WT, 0.640 ± 0.955; p = 0.536). Similarly, regional analysis revealed no significant differences in [99mTc]HMPAO metrics between groups (SUV: 0.357 ≤ p ≤ 0.640; SUVR: 0.595 ≤ p ≤ 0.936). These results suggest apparent discrepancies in rCBF between human AD and the 5XFAD model. Establishing baseline perfusion patterns in 5XFAD mice is essential to inform pre-clinical diagnostic and therapeutic drug discovery programs.


Subject(s)
Alzheimer Disease , Humans , Animals , Mice , Alzheimer Disease/diagnostic imaging , Technetium Tc 99m Exametazime , Tomography, Emission-Computed, Single-Photon/methods , Brain/diagnostic imaging , Perfusion , Cerebrovascular Circulation/physiology , Organotechnetium Compounds , Radiopharmaceuticals
3.
Alzheimers Dement (N Y) ; 3(2): 166-176, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29067326

ABSTRACT

INTRODUCTION: Diagnosis of Alzheimer's disease (AD) in vivo, by molecular imaging of amyloid or tau, is constrained because similar changes can be found in brains of cognitively normal individuals. Butyrylcholinesterase (BChE), which becomes associated with these structures in AD, could elevate the accuracy of AD diagnosis by focusing on BChE pathology in the cerebral cortex, a region of scant BChE activity in healthy brain. METHODS: N-methylpiperidin-4-yl 4-[123I]iodobenzoate, a BChE radiotracer, was injected intravenously into B6SJL-Tg(APPSwFlLon, PSEN1∗M146 L∗L286 V) 6799Vas/Mmjax (5XFAD) mice and their wild-type (WT) counterparts for comparative single photon emission computed tomography (SPECT) studies. SPECT, computed tomography (CT), and magnetic resonance imaging (MRI) enabled comparison of whole brain and regional retention of the BChE radiotracer in both mouse strains. RESULTS: Retention of the BChE radiotracer was consistently higher in the 5XFAD mouse than in WT, and differences were particularly evident in the cerebral cortex. DISCUSSION: Cerebral cortical BChE imaging with SPECT can distinguish 5XFAD mouse model from the WT counterpart.

4.
Brain Res ; 1671: 102-110, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28729192

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia. One hallmark of the AD brain is the deposition of ß-amyloid (Aß) plaques. AD is also a state of cholinergic dysfunction and butyrylcholinesterase (BChE) associates with Aß pathology. A transgenic mouse (5XFAD) is an aggressive amyloidosis model, producing Aß plaques with which BChE also associates. A derived strain (5XFAD/BChE-KO), with the BChE gene knocked out, has significantly lower fibrillar Aß than 5XFAD mice at the same age. Therefore, BChE may have a role in Aß pathogenesis. Furthermore, in AD, diminished glucose metabolism in the brain can be detected in vivo with positron emission tomography (PET) imaging following 2-deoxy-2-(18F)fluoro-D-glucose (18FDG) administration. To determine whether hypometabolism is related to BChE-induced changes in fibrillar Aß burden, whole brain and regional uptake of 18FDG in 5XFAD and 5XFAD/BChE-KO mice was compared to corresponding wild-type (WT5XFAD and WTBChE-KO) strains at 5months. Diminished fibrillar Aß burden was confirmed in 5XFAD/BChE-KO mice relative to 5XFAD. 5XFAD and 5XFAD/BChE-KO mice demonstrated reduction in whole brain 18FDG retention compared to respective wild-types. Regional analysis of relevant AD structures revealed reduction in 18FDG retention in 5XFAD mice in all brain regions analyzed (save cerebellum) compared to WT5XFAD. Alternatively, 5XFAD/BChE-KO mice demonstrated a more selective pattern of reduced retention in the cerebral cortex and thalamus compared to WTBChE-KO, while retention in hippocampal formation, amygdala and basal ganglia remained unchanged. This suggests that in knocking out BChE and reducing fibrillar Aß, a possible protective effect on brain function may be conferred in a number of structures in 5XFAD/BChE-KO mice.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Butyrylcholinesterase/deficiency , Fluorodeoxyglucose F18/pharmacology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Basal Ganglia/metabolism , Brain/metabolism , Butyrylcholinesterase/genetics , Butyrylcholinesterase/metabolism , Disease Models, Animal , Female , Gene Knockout Techniques , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Plaque, Amyloid/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics
5.
J Alzheimers Dis ; 58(2): 491-505, 2017.
Article in English | MEDLINE | ID: mdl-28453492

ABSTRACT

Amyloid-ß (Aß) plaques are a neuropathological hallmark of Alzheimer's disease (AD); however, a significant number of cognitively normal older adults can also have Aß plaques. Thus, distinguishing AD from cognitively normal individuals with Aß plaques (NwAß) based on Aß plaque detection is challenging. It has been observed that butyrylcholinesterase (BChE) accumulates in plaques preferentially in AD. Thus, detecting BChE-associated plaques has the potential as an improved AD biomarker. We present Aß, thioflavin-S, and BChE quantification of 26 postmortem brain tissues; AD (n = 8), NwAß (n = 6), cognitively normal without plaques (n = 8), and other common dementias including corticobasal degeneration, frontotemporal dementia with tau, dementia with Lewy bodies, and vascular dementia. Pathology burden in the orbitofrontal cortex, entorhinal cortex, amygdala, and hippocampal formation was determined and compared. The predictive value of Aß and BChE quantification was determined, via receiver-operating characteristic plots, to evaluate their AD diagnostic performance using sensitivity, specificity, and area under curve (AUC) metrics. In general, Aß and BChE-associated pathology were greater in AD, particularly in the orbitofrontal cortex. In this region, the largest increase (9.3-fold) was in BChE-associated pathology, observed between NwAß and AD, due to the virtual absence of BChE-associated plaques in NwAß brains. Furthermore, BChE did not associate with pathology of the other dementias. In this sample, BChE-associated pathology provided better diagnostic performance (AUC = 1.0, sensitivity/specificity = 100% /100%) when compared to Aß (AUC = 0.98, 100% /85.7%). These findings highlight the predictive value of BChE as a biomarker for AD that could facilitate timely disease diagnosis and management.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , Butyrylcholinesterase/metabolism , Plaque, Amyloid/pathology , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Brain/pathology , Diagnosis , Female , Humans , Male , Middle Aged , Plaque, Amyloid/metabolism , Psychiatric Status Rating Scales , ROC Curve
6.
Oncotarget ; 7(24): 35655-35669, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27232944

ABSTRACT

There is currently a lack of biomarkers to help properly assess novel immunotherapies at both the preclinical and clinical stages of development. Recent work done by our group indicated significant volume changes in the vaccine draining right lymph node (RLN) volumes of mice that had been vaccinated with DepoVaxTM, a lipid-based vaccine platform that was developed to enhance the potency of peptide-based vaccines. These changes in lymph node (LN) volume were unique to vaccinated mice.To better assess the potential of volumetric LN markers for multiple vaccination platforms, we evaluated 100 tumor bearing mice and assessed their response to vaccination with either a DepoVax based vaccine (DPX) or a water-in-oil emulsion (w/o), and compared them to untreated controls. MRI was used to longitudinally monitor LN and tumor volumes weekly over 4 weeks. We then evaluated changes in LN volumes occurring in response to therapy as a potential predictive biomarker for treatment success.We found that for both vaccine types, DPX and w/o, the %RLN volumetric increase over baseline and the ratio of RLN/LLN were strong predictors of successful tumor suppression (LLN is left inguinal LN). The area under the curve (AUC) was greatest, between 0.75-0.85, two (%RLN) or three (RLN/LLN) weeks post-vaccination. For optimized critical thresholds we found these biomarkers consistently had sensitivity >90% and specificity >70% indicating strong prognostic potential. Vaccination with DepoVax had a more pronounced effect on draining lymph nodes than w/o emulsion vaccines, which correlated with a higher anti-tumor activity in DPX-treated mice.


Subject(s)
Cancer Vaccines/immunology , Lymph Nodes/immunology , Neoplasms/therapy , Vaccination/methods , Adjuvants, Immunologic/chemistry , Animals , Biomarkers, Tumor/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/chemistry , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Female , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy
7.
Mol Ther Methods Clin Dev ; 2: 15048, 2015.
Article in English | MEDLINE | ID: mdl-26730395

ABSTRACT

In the preclinical development of immunotherapy candidates, understanding the mechanism of action and determining biomarkers that accurately characterize the induced host immune responses is critical to improving their clinical interpretation. Magnetic resonance imaging (MRI) was used to evaluate in vivo changes in lymph node size in response to a peptide-based cancer vaccine therapy, formulated using DepoVax (DPX). DPX is a novel adjuvant lipid-in-oil-based formulation that facilitates enhanced immune responses by retaining antigens at the injection site for extended latencies, promoting increased potentiation of immune cells. C57BL/6 mice were implanted with C3 (HPV) tumor cells and received either DPX or control treatments, 5 days post-implantation. Complete tumor eradication occurred in DPX-vaccinated animals and large volumetric increases were observed in the vaccine-draining right inguinal lymph node (VRILN) in DPX mice, likely corresponding to increased localized immune response to the vaccine. Upon evaluating the relative measure of vaccine-potentiated immune activation to tumor-induced immune response (VRILN/VLILN), receiver-operating characteristic (ROC) curves revealed an area under the curve (AUC) of 0.90 (±0.07), indicating high specificity and sensitivity as a predictive biomarker of vaccine efficacy. We have determined that for this tumor model, early MRI lymph node volumetric changes are predictive of depot immunotherapeutic success.

8.
Vaccine ; 32(51): 6956-6962, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25444822

ABSTRACT

Immunotherapies, including peptide-based vaccines, are a growing area of cancer research, and understanding their mechanism of action is crucial for their continued development and clinical application. Exploring the biodistribution of vaccine components may be key to understanding this action. This work used magnetic resonance imaging (MRI) to characterize the in vivo biodistribution of the antigen and oil substrate of the vaccine delivery system known as DepoVax(TM). DepoVax uses a novel adjuvanted lipid-in-oil based formulation to solubilise antigens and promote a depot effect. In this study, antigen or oil were tagged with superparamagnetic iron oxide (SPIO), making them visible on MR images. This enables tracking of individual vaccine components to determine changes in biodistribution. Mice were injected with SPIO-labeled antigen or SPIO-labeled oil, and imaged to examine clearance of labeled components from the vaccine site. The SPIO-antigen was steadily cleared, with nearly half cleared within two months post-vaccination. In contrast, the SPIO-oil remained relatively unchanged. The biodistribution of the SPIO-antigen component within the vaccine site was heterogeneous, indicating the presence of active clearance mechanisms, rather than passive diffusion or drainage. Mice injected with SPIO-antigen also showed MRI contrast for several weeks post-vaccination in the draining inguinal lymph node. These results indicate that MRI can visualize the in vivo longitudinal biodistribution of vaccine components. The sustained clearance is consistent with antigen up-take and trafficking by immune cells, leading to accumulation in the draining lymph node, which corresponds to the sustained immune responses and reduced tumor burden observed in vaccinated mice.


Subject(s)
Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Vaccines/administration & dosage , Vaccines/pharmacokinetics , Animals , Female , Ferric Compounds/analysis , Humans , Magnetic Resonance Imaging , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...