Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 138(36): 11433-6, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27479124

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) are crystalline polymer networks whose modular 2D structures and permanent porosity motivate efforts to integrate them into sensing, energy storage, and optoelectronic devices. These applications require forming the material as a thin film instead of a microcrystalline powder, which has been achieved previously by including a substrate in the reaction mixture. This approach suffers from two key drawbacks: COF precipitates form concurrently and contaminate the film, and variable monomer and oligomer concentrations during the polymerization provide poor control over film thickness. Here we address these challenges by growing 2D COF thin films under continuous flow conditions. Initially homogeneous monomer solutions polymerize while pumped through heated tubing for a given residence time, after which they pass over a substrate. When the residence time and conditions are chosen judiciously, 2D COF powders form downstream of the substrate, and the chemical composition of the solution at the substrate remains constant. COF films grown in flow exhibit constant rates of mass deposition, enabling thickness control as well as access to thicker films than are available from previous static growth procedures. Notably, the crystallinity of COF films is observed only at longer residence times, suggesting that oligomeric and polymeric species play an important role in forming the 2D COF lattice. This approach, which we demonstrate for four different frameworks, is both a simple and powerful method to control the formation of COF thin films.


Subject(s)
Organic Chemicals/chemistry , Kinetics , Polymerization
2.
Chem Sci ; 7(10): 6357-6364, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-28567248

ABSTRACT

A Cu-catalyzed benzannulation reaction transforms ortho(arylene ethynylene) oligomers into ortho-arylenes. This approach circumvents iterative Suzuki cross-coupling reactions previously used to assemble hindered ortho-arylene backbones. These derivatives form helical folded structures in the solid-state and in solution, as demonstrated by X-ray crystallography and solution-state NMR analysis. DFT calculations of misfolded conformations are correlated with variable-temperature 1H and EXSY NMR to reveal that folding is cooperative and more favorable in halide-substituted naphthalenes. Helical ortho-arylene foldamers with specific aromatic sequences organize functional π-electron systems into arrangements ideal for ambipolar charge transport and show preliminary promise for the surface-mediated synthesis of structurally defined graphene nanoribbons.

3.
J Org Chem ; 80(24): 12740-5, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26560445

ABSTRACT

We report a divergent synthetic strategy and novel design concept that exploit molecular mixtures to create amorphous organic charge-transporting glasses. Using Suzuki-Miyaura cross-coupling reactions, we synthesized well-defined molecular mixtures in a single step. These solution-processable materials are noncrystalline and show good thermal and morphological stabilities. Moreover, they have robust hole and electron mobilities, which make them excellent candidate materials for organic light-emitting diodes. Our general strategy enables the facile synthesis of noncrystalline materials with well-controlled electronic properties.

4.
Angew Chem Int Ed Engl ; 54(45): 13225-9, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26355871

ABSTRACT

Porous polymer networks (PPNs) are attractive materials for capacitive energy storage because they offer high surface areas for increased double-layer capacitance, open structures for rapid ion transport, and redox-active moieties that enable faradaic (pseudocapacitive) energy storage. Here we demonstrate a new attractive feature of PPNs--the ability of their reduced forms (radical anions and dianions) to interact with small radii cations through synergistic interactions arising from densely packed redox-active groups, only when prepared as thin films. When naphthalene diimides (NDIs) are incorporated into PPN films, the carbonyl groups of adjacent, electrochemically generated, NDI radical anions and dianions bind strongly to K(+), Li(+), and Mg(2+), shifting the formal potentials of NDI's second reduction by 120 and 460 mV for K(+) and Li(+)-based electrolytes, respectively. In the case of Mg(2+), NDI's two redox waves coalesce into a single two-electron process with shifts of 240 and 710 mV, for the first and second reductions, respectively, increasing the energy density by over 20 % without changing the polymer backbone. In contrast, the formal reduction potentials of NDI derivatives in solution are identical for each electrolyte, and this effect has not been reported for NDI previously. This study illustrates the profound influence of the solid-state structure of a polymer on its electrochemical response, which does not simply reflect the solution-phase redox behavior of its monomers.

5.
ACS Nano ; 9(3): 3178-83, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25672785

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80-99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

6.
J Org Chem ; 79(10): 4312-21, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24773090

ABSTRACT

Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.

7.
J Am Chem Soc ; 135(45): 16821-4, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24147596

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) are candidate materials for charge storage devices because of their micro- or mesoporosity, high surface area, and ability to predictably organize redox-active groups. The limited chemical and oxidative stability of established COF linkages, such as boroxines and boronate esters, precludes these applications, and no 2D COF has demonstrated reversible redox behavior. Here we describe a ß-ketoenamine-linked 2D COF that exhibits reversible electrochemical processes of its anthraquinone subunits, excellent chemical stability to a strongly acidic electrolyte, and one of the highest surface areas of the imine- or enamine-linked 2D COFs. Electrodes modified with the redox-active COF show higher capacitance than those modified with a similar non-redox-active COF, even after 5000 charge-discharge cycles. These findings demonstrate the promise of using 2D COFs for capacitive storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...