Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 62(10): 5242-5248, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31038950

ABSTRACT

Herein we describe the development of a focused series of functionalized pyridazin-3(2 H)-one-based formyl peptide receptor (FPR) agonists that demonstrate high potency and biased agonism. The compounds described demonstrated biased activation of prosurvival signaling, ERK1/2 phosphorylation, through diminution of the detrimental FPR1/2-mediated intracellular calcium (Cai2+) mobilization. Compound 50 showed an EC50 of 0.083 µM for phosphorylation of ERK1/2 and an approximate 20-fold bias away from Cai2+ mobilization at the hFPR1.


Subject(s)
Pyrazines/chemical synthesis , Pyrazines/pharmacology , Receptors, Formyl Peptide/agonists , Blood Proteins/metabolism , Calcium Signaling/drug effects , Drug Discovery , HL-60 Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Signaling System/drug effects , Phosphorylation/drug effects , Protein Binding , Receptors, Lipoxin , Structure-Activity Relationship
2.
Drug Metab Dispos ; 47(2): 164-172, 2019 02.
Article in English | MEDLINE | ID: mdl-30478158

ABSTRACT

The antitussive agent noscapine has been shown to inhibit the proliferation of cancer cells by disruption of tubulin dynamic. However, the efficacy of several anticancer drugs that inhibit tublin dynamics (vinca alkaloids and taxanes) is reduced by the multidrug resistance phenotype. These compounds are substrates for P-glycoprotein (P-gp)-mediated extrusion from cells. Consequently, the antiproliferative activity of noscapine and a series of derivatives was measured in drug-sensitive and drug-resistant cells that overexpress P-gp. None of the noscapine derivatives displayed lower potency in cells overexpressing P-gp, thereby suggesting a lack of interaction with this pump. However, the cellular efflux of a fluorescent substrate by P-gp was potently inhibited by noscapine and most derivatives. Further investigation with purified, reconstituted P-gp demonstrated that inhibition of P-gp function was due to direct interaction of noscapine derivatives with the transporter. Moreover, coadministration of vinblastine with two of the noscapine derivatives displayed synergistic inhibition of proliferation, even in P-gp-expressing resistant cell lines. Therefore, noscapine derivatives offer a dual benefit of overcoming the significant impact of P-gp in conferring multidrug resistance and synergy with tubulin-disrupting anticancer drugs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Noscapine/pharmacology , ATP Binding Cassette Transporter, Subfamily B/isolation & purification , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Neoplasms/pathology , Noscapine/analogs & derivatives , Papaver/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Vinblastine/pharmacology
4.
Chemistry ; 24(8): 1922-1930, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29171692

ABSTRACT

Dihydropteroate synthase (DHPS) is an enzyme of the folate biosynthesis pathway, which catalyzes the formation of 7,8-dihydropteroate (DHPt) from 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) and para-aminobenzoic acid (pABA). DHPS is the long-standing target of the sulfonamide class of antibiotics that compete with pABA. In the wake of sulfa drug resistance, targeting the structurally rigid (and more conserved) pterin site has been proposed as an alternate strategy to inhibit DHPS in wild-type and sulfa drug resistant strains. Following the work on developing pterin-site inhibitors of the adjacent enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), we now present derivatives of 8-mercaptoguanine, a fragment that binds weakly within both enzymes, and quantify sub-µm binding using surface plasmon resonance (SPR) to Escherichia coli DHPS (EcDHPS). Eleven ligand-bound EcDHPS crystal structures delineate the structure-activity relationship observed providing a structural framework for the rational development of novel, substrate-envelope-compliant DHPS inhibitors.


Subject(s)
Dihydropteroate Synthase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Guanine/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dihydropteroate Synthase/metabolism , Enzyme Inhibitors/metabolism , Escherichia coli/enzymology , Guanine/metabolism , Hydrogen Bonding , Ligands , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity , Sulfonamides/chemistry , Surface Plasmon Resonance
5.
J Med Chem ; 59(11): 5248-63, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27094768

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a member of the folate biosynthesis pathway found in prokaryotes and lower eukaryotes that catalyzes the pyrophosphoryl transfer from the ATP cofactor to a 6-hydroxymethyl-7,8-dihydropterin substrate. We report the chemical synthesis of a series of S-functionalized 8-mercaptoguanine (8MG) analogues as substrate site inhibitors of HPPK and quantify binding against the E. coli and S. aureus enzymes (EcHPPK and SaHPPK). The results demonstrate that analogues incorporating acetophenone-based substituents have comparable affinities for both enzymes. Preferential binding of benzyl-substituted 8MG derivatives to SaHPPK was reconciled when a cryptic pocket unique to SaHPPK was revealed by X-ray crystallography. Differential chemical shift perturbation analysis confirmed this to be a common mode of binding for this series to SaHPPK. One compound (41) displayed binding affinities of 120 nM and 1.76 µM for SaHPPK and EcHPPK, respectively, and represents a lead for the development of more potent and selective inhibitors of SaHPPK.


Subject(s)
Diphosphotransferases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Staphylococcus aureus/enzymology , Binding Sites/drug effects , Crystallography, X-Ray , Diphosphotransferases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
6.
ChemMedChem ; 9(2): 399-410, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24339417

ABSTRACT

Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, is a well-known antitussive drug that has a relatively safe in vitro toxicity profile. Noscapine is also known to possess weak anticancer efficacy, and since its discovery, efforts have been made to design derivatives with improved potency. Herein, the synthesis of a series of noscapine analogues, which have been modified in the 6', 9', 1 and 7-positions, is described. In a previous study, replacement of the naturally occurring N-methyl group in the 6'-position with an N-ethylaminocarbonyl was shown to promote cell-cycle arrest and cytotoxicity against three cancer cell lines. Here, this modification has been combined with other structural changes that have previously been shown to improve anticancer activity, namely halo substitution in the 9'-position, regioselective O-demethylation to reveal a free phenol in the 7-position, and reduction of the lactone to the corresponding cyclic ether in the 1-position. The incorporation of new aryl substituents in the 9'-position was also investigated. The study identified interesting new compounds able to induce G2/M cell-cycle arrest and that possess cytotoxic activity against the human prostate carcinoma cell line PC3, the human breast adenocarcinoma cell line MCF-7, and the human pancreatic epithelioid carcinoma cell line PANC-1. In particular, the ethyl urea cyclic ether noscapinoids and a compound containing a 6'-ethylaminocarbonyl along with 9'-chloro, 7-hydroxy and lactone moieties exhibited the most promising biological activities, with EC50 values in the low micromolar range against all three cancer cell lines, and these derivatives warrant further investigation.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Noscapine/analogs & derivatives , Noscapine/pharmacology , Papaver/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Female , Humans , Male , Neoplasms/drug therapy , Structure-Activity Relationship
7.
ChemMedChem ; 7(12): 2122-33, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23055449

ABSTRACT

Noscapine is a phthalideisoquinoline alkaloid isolated from the opium poppy Papaver somniferum. It has long been used as an antitussive agent, but has more recently been found to possess microtubule-modulating properties and anticancer activity. Herein we report the synthesis and pharmacological evaluation of a series of 6'-substituted noscapine derivatives. To underpin this structure-activity study, an efficient synthesis of N-nornoscapine and its subsequent reduction to the cyclic ether derivative of N-nornoscapine was developed. Reaction of the latter with a range of alkyl halides, acid chlorides, isocyanates, thioisocyanates, and chloroformate reagents resulted in the formation of the corresponding N-alkyl, N-acyl, N-carbamoyl, N-thiocarbamoyl, and N-carbamate derivatives, respectively. The ability of these compounds to inhibit cell proliferation was assessed in cell-cycle cytotoxicity assays using prostate cancer (PC3), breast cancer (MCF-7), and colon cancer (Caco-2) cell lines. Compounds that showed activity in the cell-cycle assay were further evaluated in cell viability assays using PC3 and MCF-7 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Noscapine/analogs & derivatives , Noscapine/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antitussive Agents/chemical synthesis , Antitussive Agents/chemistry , Antitussive Agents/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Neoplasms/drug therapy , Noscapine/chemical synthesis , Papaver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...