Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 102(50): 18147-52, 2005 Dec 13.
Article in English | MEDLINE | ID: mdl-16330755

ABSTRACT

Saturated thalassic brines are among the most physically demanding habitats on Earth: few microbes survive in them. Salinibacter ruber is among these organisms and has been found repeatedly in significant numbers in climax saltern crystallizer communities. The phenotype of this bacterium is remarkably similar to that of the hyperhalophilic Archaea (Haloarchaea). The genome sequence suggests that this resemblance has arisen through convergence at the physiological level (different genes producing similar overall phenotype) and the molecular level (independent mutations yielding similar sequences or structures). Several genes and gene clusters also derive by lateral transfer from (or may have been laterally transferred to) haloarchaea. S. ruber encodes four rhodopsins. One resembles bacterial proteorhodopsins and three are of the haloarchaeal type, previously uncharacterized in a bacterial genome. The impact of these modular adaptive elements on the cell biology and ecology of S. ruber is substantial, affecting salt adaptation, bioenergetics, and photobiology.


Subject(s)
Archaea/genetics , Bacteroidetes/genetics , Evolution, Molecular , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Phylogeny , Rhodopsins, Microbial/genetics , Adaptation, Physiological/genetics , Bacteroidetes/enzymology , Base Composition , Base Sequence , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
2.
Science ; 302(5652): 1967-9, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14671304

ABSTRACT

The complete genome sequence of Geobacter sulfurreducens, a delta-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.


Subject(s)
Genome, Bacterial , Geobacter/genetics , Geobacter/metabolism , Metals/metabolism , Acetates/metabolism , Acetyl Coenzyme A/metabolism , Aerobiosis , Anaerobiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Chemotaxis , Chromosomes, Bacterial/genetics , Cytochromes c/genetics , Cytochromes c/metabolism , Electron Transport , Energy Metabolism , Genes, Bacterial , Genes, Regulator , Geobacter/physiology , Hydrogen/metabolism , Movement , Open Reading Frames , Oxidation-Reduction , Phylogeny
3.
Science ; 299(5615): 2071-4, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12663927

ABSTRACT

The complete genome sequence of Enterococcus faecalis V583, a vancomycin-resistant clinical isolate, revealed that more than a quarter of the genome consists of probable mobile or foreign DNA. One of the predicted mobile elements is a previously unknown vanB vancomycin-resistance conjugative transposon. Three plasmids were identified, including two pheromone-sensing conjugative plasmids, one encoding a previously undescribed pheromone inhibitor. The apparent propensity for the incorporation of mobile elements probably contributed to the rapid acquisition and dissemination of drug resistance in the enterococci.


Subject(s)
Biological Evolution , Enterococcus faecalis/genetics , Genome, Bacterial , Interspersed Repetitive Sequences , Sequence Analysis, DNA , Vancomycin Resistance/genetics , Adhesins, Bacterial/genetics , Bacterial Adhesion , Bacterial Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromosomes, Bacterial/genetics , Conjugation, Genetic , Conserved Sequence , DNA Transposable Elements , Digestive System/microbiology , Drug Resistance, Multiple, Bacterial , Enterococcus faecalis/drug effects , Enterococcus faecalis/pathogenicity , Enterococcus faecalis/physiology , Gene Transfer, Horizontal , Gram-Positive Bacterial Infections/microbiology , Humans , Lysogeny , Open Reading Frames , Oxidative Stress , Plasmids , Synteny , Virulence/genetics , Virulence Factors/genetics
4.
Environ Microbiol ; 4(12): 799-808, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12534463

ABSTRACT

Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.


Subject(s)
Energy Metabolism , Genome, Bacterial , Open Reading Frames/genetics , Pseudomonas putida/genetics , Bacterial Proteins/genetics , Base Sequence , Genes, Bacterial/genetics , Molecular Sequence Data , Phylogeny , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas putida/metabolism
5.
Science ; 293(5529): 498-506, 2001 Jul 20.
Article in English | MEDLINE | ID: mdl-11463916

ABSTRACT

The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.


Subject(s)
Genome, Bacterial , Sequence Analysis, DNA , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Antigens, Bacterial , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Vaccines , Base Composition , Carbohydrate Metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromosomes, Bacterial/genetics , Computational Biology , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Duplication , Genes, Bacterial , Hexosamines/metabolism , Oligonucleotide Array Sequence Analysis , Recombination, Genetic , Repetitive Sequences, Nucleic Acid , Species Specificity , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/metabolism , Virulence , rRNA Operon
6.
Proc Natl Acad Sci U S A ; 98(7): 4136-41, 2001 Mar 27.
Article in English | MEDLINE | ID: mdl-11259647

ABSTRACT

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living alpha-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus.


Subject(s)
Caulobacter crescentus/genetics , Genome, Bacterial , Adaptation, Biological/genetics , Cell Cycle/genetics , DNA Methylation , Dinucleotide Repeats , Molecular Sequence Data , Peptide Hydrolases/genetics , Phylogeny , Signal Transduction , Transcription, Genetic
7.
J Bacteriol ; 182(11): 3310-3, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10809719

ABSTRACT

The bacterial transposon Tn7 inserts at high frequency into a specific site called attTn7, which is present in the chromosomes of many bacteria. We show here that transcription of a nearby gene, glmS, decreases the frequency of Tn7 insertion into attTn7, thus providing a link between Tn7 transposition and host cell metabolism.


Subject(s)
DNA Transposable Elements , DNA, Bacterial , Recombination, Genetic , Transcription, Genetic , Bacterial Proteins/genetics , Chromosomes, Bacterial , Escherichia coli/genetics , F Factor , Gene Expression , Glucosamine/metabolism , Nucleotidyltransferases/genetics
8.
J Bacteriol ; 178(21): 6184-91, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8892817

ABSTRACT

We have used the bacterial transposon Tn7 to examine communication between widely separated DNA sites in the Escherichia coli chromosome. Using Tn7 target immunity, a regulatory feature of transposition which influences target selection, we have evaluated (i) how the presence of Tn7 sequences at one DNA site affects Tn7 insertion into another site in the same DNA molecule and (ii) the nucleotide distances over which the two sites are able to communicate. We demonstrate that Tn7 sequences at one chromosomal site act at a distance to inhibit insertion of Tn7 elsewhere in that DNA as far away as 190 kb, reflecting effective long-range cis interactions. We have found that while target immunity is effective over a substantial region of the chromosome, insertion of Tn7 into a more distant site 1.9 Mb away in the same DNA is not inhibited; this observation provides evidence that target immunity relies on DNA spacing. We also find that within the region of the chromosome affected by target immunity, the magnitude of the immune effect is greater at close DNA sites than DNA sites farther away, suggesting that target immunity is distance dependent. We also extend the characterization of the Tn7 end-sequences involved in transposition and target immunity and describe how Tn7 target immunity can be used as a tool for probing bacterial chromosome structure.


Subject(s)
DNA Transposable Elements , DNA, Bacterial , Escherichia coli/genetics , Chromosomes, Bacterial , Gene Deletion , Mutagenesis, Insertional
9.
Genes Dev ; 10(17): 2145-57, 1996 Sep 01.
Article in English | MEDLINE | ID: mdl-8804309

ABSTRACT

Most transposons display target site selectivity, inserting preferentially into sites that contain particular features. The bacterial transposon Tn7 possesses the unusual ability to recognize two different classes of target sites. Tn7 inserts into these classes of target sites through two transposition pathways mediated by different combinations of the five Tn7-encoded transposition proteins. In one transposition pathway, Tn7 inserts into a unique site in the bacterial chromosome, attTn7, through specific recognition of sequences in attTn7; the other transposition pathway ignores the attTn7 target. Here we examine targets of the non-attTn7 pathway and find that Tn7 preferentially inserts into bacterial plasmids that can conjugate between cells. Furthermore, Tn7 appears to recognize preferred targets through the conjugation process, as we show that Tn7 inserts poorly into plasmids containing mutations that block plasmid transfer. We propose that Tn7 recognizes preferred targets through features of the conjugation process, a distinctive target specificity that offers Tn7 the ability to spread efficiently through bacterial populations.


Subject(s)
Conjugation, Genetic/genetics , DNA Transposable Elements/genetics , DNA-Binding Proteins , Escherichia coli Proteins , Plasmids/genetics , Bacterial Proteins/genetics , Bacteriophages/genetics , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...