Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766162

ABSTRACT

Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive states are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation. Traditional channel protein reconstitution methods rely upon exogenous expression and/or purification from endogenous cellular sources which are frequently contaminated by resident ionophores. Here we describe a fully synthetic method to assay the functional properties of the polycystin subfamily of transient receptor potential (TRP) channels that natively traffic to primary cilia and endoplasmic reticulum organelles. Using this method, we characterize their membrane integration, orientation and conductance while comparing these results to their endogenous channel properties. Outcomes define a novel synthetic approach that can be applied broadly to investigate other channels resistant to biophysical analysis and pharmacological characterization.

2.
EMBO Rep ; 24(7): e56783, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37158562

ABSTRACT

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.


Subject(s)
TRPP Cation Channels , Transient Receptor Potential Channels , Humans , Mice , Animals , TRPP Cation Channels/chemistry , Signal Transduction , Ion Transport , Transient Receptor Potential Channels/genetics , Mutation , Receptors, Cell Surface/metabolism , Calcium Channels/metabolism
3.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216541

ABSTRACT

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Subject(s)
Autism Spectrum Disorder , Cilia , Mice , Animals , Cilia/metabolism , Autism Spectrum Disorder/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Neurons/metabolism , Hippocampus/metabolism , Receptors, Cell Surface/metabolism , Calcium Channels/metabolism
4.
Annu Rev Physiol ; 85: 425-448, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36763973

ABSTRACT

Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.


Subject(s)
TRPP Cation Channels , Humans , Calcium/metabolism , Signal Transduction , TRPP Cation Channels/chemistry , TRPP Cation Channels/metabolism
5.
Cell Rep ; 40(8): 111248, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001977

ABSTRACT

Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.


Subject(s)
Tamoxifen , Voltage-Gated Sodium Channels , Action Potentials , Ganglia, Spinal , Humans , Nociceptors , Pain/drug therapy , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
6.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33503406

ABSTRACT

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Subject(s)
Models, Molecular , Tamoxifen/chemistry , Voltage-Gated Sodium Channels/chemistry , HEK293 Cells , Humans
7.
J Cell Sci ; 133(24)2020 12 24.
Article in English | MEDLINE | ID: mdl-33199522

ABSTRACT

Approximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization - two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Cilia/metabolism , EF Hand Motifs , Mice , Polycystic Kidney Diseases/genetics , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
8.
Proc Natl Acad Sci U S A ; 117(19): 10329-10338, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32332171

ABSTRACT

Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium-an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain-a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.


Subject(s)
Calcium/metabolism , Cilia/pathology , Ion Channel Gating , Mutation , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/metabolism , Cilia/metabolism , HEK293 Cells , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Protein Domains , TRPP Cation Channels/chemistry , TRPP Cation Channels/genetics
9.
Cell Signal ; 72: 109626, 2020 08.
Article in English | MEDLINE | ID: mdl-32251715

ABSTRACT

Variants in genes which encode for polycystin-1 and polycystin-2 cause most forms of autosomal dominant polycystic disease (ADPKD). Despite our strong understanding of the genetic determinants of ADPKD, we do not understand the structural features which govern the function of polycystins at the molecular level, nor do we understand the impact of most disease-causing variants on the conformational state of these proteins. These questions have remained elusive because polycystins localize to several organelle membranes, including the primary cilia. Primary cilia are microtubule based organelles which function as cellular antennae. Polycystin-2 and related polycystin-2 L1 are members of the transient receptor potential (TRP) ion channel family, and form distinct ion channels in the primary cilia of disparate cell types which can be directly measured. Polycystin-1 has both ion channel and adhesion G-protein coupled receptor (GPCR) features-but its role in forming a channel complex or as a channel subunit chaperone is undetermined. Nonetheless, recent polycystin structural determination by cryo-EM has provided a molecular template to understand their biophysical regulation and the impact of disease-causing variants. We will review these advances and discuss hypotheses regarding the regulation of polycystin channel opening by their structural domains within the context of the primary cilia.


Subject(s)
Cilia/metabolism , TRPP Cation Channels/chemistry , TRPP Cation Channels/metabolism , Animals , Calcium Signaling , Disease Progression , Humans , Protein Domains
10.
Carbohydr Polym ; 230: 115591, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887855

ABSTRACT

Maize starch was plasticized by glycerol, choline chloride ([Chol][Cl]) and ionic liquids (Choline acetate ([Chol][Ace]), 1-Ethyl-3-methylimidazolium Chloride ([EMIM][Cl]) and 1-Ethyl-3-methylimidazolium acetate ([EMIM][Ace]). Melt rheology at 120 °C was assessed with a twin-screw micro-compounder used for processing small quantities (8-10 g), and with a capillary rheometer with pre-shearing (Rheoplast). Qualitative agreement was found between shear viscosities obtained by both rheometry devices, showing the interest of the micro-compounder for screening of plasticizers' influence. The lower shear viscosity values were obtained in presence of [EMIM][Ace] whereas [Chol][Cl] led to the largest ones. Rather than processing induced macromolecular degradation, the glass transition temperature depressing effect of the plasticizers was found to better explain viscosity differences. This underlines the strong influence of the nature of the plasticizers on starch melt rheology. Finally, results from extensional viscosity shows the specific influence of [EMIM][Ace], suggesting that this plasticizer could be particularly relevant for thermoplastic starch processing.

11.
Proc Natl Acad Sci U S A ; 116(52): 26549-26554, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31822620

ABSTRACT

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.

12.
Trends Pharmacol Sci ; 40(10): 718-720, 2019 10.
Article in English | MEDLINE | ID: mdl-31495454

ABSTRACT

Voltage-gated sodium channels (Navs) initiate the action potential waveforms in excitable cells. The molecular mechanisms controlling this process have been actively debated. New prokaryotic Nav structures by Wisedchaisri et al. have completed our understanding of the molecular conformations required for cellular electrical signaling, and provide key templates for research to examine eukaryotic Navs.


Subject(s)
Sodium , Voltage-Gated Sodium Channels , Molecular Conformation
13.
Proc Natl Acad Sci U S A ; 116(31): 15540-15549, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31315976

ABSTRACT

The opening of voltage-gated ion channels is initiated by transfer of gating charges that sense the electric field across the membrane. Although transient receptor potential ion channels (TRP) are members of this family, their opening is not intrinsically linked to membrane potential, and they are generally not considered voltage gated. Here we demonstrate that TRPP2, a member of the polycystin subfamily of TRP channels encoded by the PKD2L1 gene, is an exception to this rule. TRPP2 borrows a biophysical riff from canonical voltage-gated ion channels, using 2 gating charges found in its fourth transmembrane segment (S4) to control its conductive state. Rosetta structural prediction demonstrates that the S4 undergoes ∼3- to 5-Å transitional and lateral movements during depolarization, which are coupled to opening of the channel pore. Here both gating charges form state-dependent cation-π interactions within the voltage sensor domain (VSD) during membrane depolarization. Our data demonstrate that the transfer of a single gating charge per channel subunit is requisite for voltage, temperature, and osmotic swell polymodal gating of TRPP2. Taken together, we find that irrespective of stimuli, TRPP2 channel opening is dependent on activation of its VSDs.


Subject(s)
Calcium Channels/metabolism , Ion Channel Gating , Membrane Potentials , Receptors, Cell Surface/metabolism , Calcium Channels/genetics , HEK293 Cells , Humans , Protein Domains , Receptors, Cell Surface/genetics
14.
Elife ; 72018 02 14.
Article in English | MEDLINE | ID: mdl-29443690

ABSTRACT

Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins' functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium - a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2. Using primary cultures of collecting duct cells, we show that polycystin-2, but not polycystin-1, is a required subunit for the ion channel in the primary cilium. The polycystin-2 channel preferentially conducts K+ and Na+; intraciliary Ca2+, enhances its open probability. We introduce a novel method for measuring heterologous polycystin-2 channels in cilia, which will have utility in characterizing PKD2 variants that cause ADPKD.


Subject(s)
Cations/metabolism , Cilia/chemistry , Epithelial Cells/chemistry , Kidney Tubules/chemistry , Potassium/metabolism , Sodium/metabolism , TRPP Cation Channels/analysis , Animals , Humans , Mice , Mice, Transgenic
15.
Carbohydr Polym ; 177: 424-432, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28962788

ABSTRACT

Native starch containing 12% water was melt processed in presence of 23% of various plasticizers at 120°C, either by simple compression molding or by extrusion using a laboratory scale microcompounder. Glycerol, a typical starch plasticizer, was used as a reference and compared to three choline salts: raw choline chloride (which is a solid in dry state with a melting point above 300°C), and two ionic liquids synthesized from this precursor (choline acetate and choline lactate, liquids below 100°C). These ionic plasticizers were shown to allow a more efficient melting of native starch in both processes. The investigation of macromolecular structure changes during processing shows that this efficiency can be ascribed to a starch chain scission mechanism, resulting in lower specific mechanical energy input need for starch thermoplasticization compared to glycerol plasticized starch. Compared to the synthesized ionic liquids, raw commercial choline chloride leads to a good compromise between limited chain scission, and final water uptake and thermomechanical properties.


Subject(s)
Choline/chemistry , Ionic Liquids/chemistry , Plasticizers/chemistry , Starch/chemistry , Glycerol
16.
Proc Natl Acad Sci U S A ; 114(30): E6079-E6088, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696294

ABSTRACT

TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles. M7Vs accumulate Zn2+ in a glutathione-enriched, reduced lumen when cytosolic Zn2+ concentrations are elevated. Treatments that increase reactive oxygen species (ROS) trigger TRPM7-dependent Zn2+ release from the vesicles, whereas reduced glutathione prevents TRPM7-dependent cytosolic Zn2+ influx. These observations strongly support the notion that ROS-mediated TRPM7 activation releases Zn2+ from intracellular vesicles after Zn2+ overload. Like the endoplasmic reticulum, these vesicles are a distributed system for divalent cation uptake and release, but in this case the primary divalent ion is Zn2+ rather than Ca2.


Subject(s)
Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , TRPM Cation Channels/metabolism , Transport Vesicles/metabolism , Zinc/metabolism , Embryonic Development , Glutathione/metabolism , HEK293 Cells , Humans , Reactive Oxygen Species/metabolism
17.
Carbohydr Polym ; 172: 120-129, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28606518

ABSTRACT

This study combines experimental and numerical approaches to investigate the microstructure and mechanical behaviour of non-miscible plasticised starch/zein blends. The concept of Representative Elementary Size (RES) is used to rank the effect of five different plasticisers (cholinium acetate, glycerol, butyl methyl imidazolium chloride, glycerol-choline chloride, urea-choline chloride) inducing microstructural and mechanical changes in the blends. Microstructural and mechanical RESs are derived from microscopy image analysis and Finite Element Modelling of elasticity behaviour of studied blends. Compared to the usual consideration of ultimate mechanical properties (elongation and stress at break), the RES-based approach allows detecting the presence of perfect or imperfect interface between starch and zein particles depending on the nature of plasticiser.

18.
FASEB J ; 31(7): 3167-3178, 2017 07.
Article in English | MEDLINE | ID: mdl-28400471

ABSTRACT

Voltage-gated sodium channels (NaVs) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial NaVs have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial NaVs. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic NaVs NsVBa (nonselective voltage-gated Bacillus alcalophilus) and NaChBac (bacterial sodium channel from Bacillus halodurans) (IC50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of NsVBa, whereas the local anesthetic drug lidocaine was shown to antagonize NsVBa without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of NsVBa, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of NsVBa in one of the deactivated states. In mammalian NaVs, JZTx-27 preferably inhibited the inactivation of NaV1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic NaVs. More important, we proposed that JZTx-27 stabilized the NsVBa VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of NaVs.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.


Subject(s)
Bacillus/metabolism , Spider Venoms/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/physiology , Amino Acid Sequence , Animals , Binding Sites , Electrophysiological Phenomena , Humans , Protein Binding , Protein Conformation , Spiders/physiology
19.
Nat Commun ; 8: 14205, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205548

ABSTRACT

Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4-S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate.


Subject(s)
Sodium Channel Agonists/chemistry , Sodium Channel Agonists/metabolism , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/physiology , Amino Acid Sequence , Electrophysiology , Ion Channel Gating/genetics , Ion Channel Gating/physiology , Ion Channels/chemistry , Ion Channels/genetics , Ion Channels/physiology , Kinetics , Models, Molecular , Mutation , Prokaryotic Cells/chemistry , Prokaryotic Cells/metabolism , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Sequence Alignment , Structure-Activity Relationship , Voltage-Gated Sodium Channels/genetics , X-Ray Diffraction
20.
J Gen Physiol ; 149(1): 37-47, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27999145

ABSTRACT

Mammalian cilia are ubiquitous appendages found on the apical surface of cells. Primary and motile cilia are distinct in both morphology and function. Most cells have a solitary primary cilium (9+0), which lacks the central microtubule doublet characteristic of motile cilia (9+2). The immotile primary cilia house unique signaling components and sequester several important transcription factors. In contrast, motile cilia commonly extend into the lumen of respiratory airways, fallopian tubes, and brain ventricles to move their contents and/or produce gradients. In this review, we focus on the composition of putative ion channels found in both types of cilia and in the periciliary membrane and discuss their proposed functions. Our discussion does not cover specialized cilia in photoreceptor or olfactory cells, which express many more ion channels.


Subject(s)
Cilia/physiology , Ion Channels/physiology , Signal Transduction/physiology , Animals , Humans , Ion Channel Gating/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...