Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Discov ; 9(1): 347, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726268

ABSTRACT

Sonic Hedgehog (SHH) medulloblastomas (MBs) exhibit an intermediate prognosis and extensive intertumoral heterogeneity. While SHH pathway antagonists are effective in post-pubertal patients, younger patients exhibit significant side effects, and tumors that harbor mutations in downstream SHH pathway genes will be drug resistant. Thus, novel targeted therapies are needed. Here, we performed preclinical testing of the potent MEK inhibitor (MEKi) trametinib on tumor properties across 2 human and 3 mouse SHH MB models in vitro and in 3 orthotopic MB xenograft models in vivo. Trametinib significantly reduces tumorsphere size, stem/progenitor cell proliferation, viability, and migration. RNA-sequencing on human and mouse trametinib treated cells corroborated these findings with decreased expression of cell cycle, stem cell pathways and SHH-pathway related genes concomitant with increases in genes associated with cell death and ciliopathies. Importantly, trametinib also decreases tumor growth and increases survival in vivo. Cell cycle related E2F target gene sets are significantly enriched for genes that are commonly downregulated in both trametinib treated tumorspheres and primary xenografts. However, IL6/JAK STAT3 and TNFα/NFκB signaling gene sets are specifically upregulated following trametinib treatment in vivo indicative of compensatory molecular changes following long-term MEK inhibition. Our study reveals a novel role for trametinib in effectively attenuating SHH MB tumor progression and warrants further investigation of this potent MEK1/2 inhibitor either alone or in combination with other targeted therapies for the treatment of SHH MB exhibiting elevated MAPK pathway activity.

2.
Bioconjug Chem ; 32(3): 512-522, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33556240

ABSTRACT

We have previously reported on a functionalized folic acid (FA) conjugated poly(styrene-alt-maleic anhydride) (SMA) via biological linker 2,4-diaminobutyric acid (DABA) (FA-DABA-SMA) copolymer. This biocompatible nanocopolymer self-assembles in a pH-dependent manner, providing stimuli responsiveness, active targeting, and extended release of hydrophobic chemotherapeutic agents and effectively penetrates the inner core of 3-dimensional cancer spheroid models. The empty FA-DABA-SMA decreased tumor spheroid volume, revealing a previously unknown mechanism of action. Here, we investigated the potential mechanism of the small (20 kDa) and large (350 kDa) FA-DABA-SMA empty copolymers affecting the folic acid receptor alpha (FRα) signaling properties in breast and prostate cancer cell lines. Microscopic imaging, immunocytochemistry, flow cytometry, Caspase 3/7 apoptosis assays, Incucyte live cell tracking, the scratch wound assay, the water-soluble tetrazolium salt-1 (WST-1) cell viability assay, morphologic changes, and Western blot for the expression levels of FRα on the cell surface were used on MDA MB-231 and MCF-7 breast and DU-145 prostate cancer cell lines. The findings indicate that FA-DABA-SMA increases FRα expression levels in breast MDA MB-231 cancer cells and then disrupts FR signaling by reducing HES1 and NOTCH1 protein expression levels. Also, FA-DABA-SMA induces apoptosis and further causes a change in the MDA MB-231 cells' morphology and significantly reduces their ability to migrate in a scratch wound assay. Collectively, these findings provide a novel insight into the functionalized FA-DABA-SMA copolymer. The 350 and 20 kDa copolymers actively target FRα to initialize internationalization. However, only the large size and sheet-shaped 350 kDa copolymers disrupt FRα signaling. The significance of these novel findings reveals that the copolymer's intracellular activity is critically dependent on the size and structural shape. This report offers novel therapeutic insight into a dual mechanism of the FA-DABA-SMA copolymer for its therapeutic potential to treat cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Folate Receptor 1/metabolism , Folic Acid/chemistry , Nanomedicine , Polymers/chemistry , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Folic Acid/metabolism , Folic Acid/pharmacology , Humans , Male , Pregnancy , Protein Binding
3.
Cancers (Basel) ; 11(11)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683806

ABSTRACT

Nanomedicine as a multimodality treatment of cancer utilizes the advantages of nanodelivery systems of drugs. They are superior to the clinical administration of different therapeutic agents in several aspects, including simultaneous delivery of drugs to the active site, precise ratio control of the loading drugs and overcoming multidrug resistance. The role of nanopolymer size and structural shape on the internalization process and subsequent intracellular toxicity is limited. Here, the size and shape dependent mechanism of a functionalized copolymer was investigated using folic acid (FA) covalently bonded to the copolymer poly (styrene-alt-maleic anhydride) (SMA) on its hydrophilic exterior via a biological linker 2,4-diaminobutyric acid (DABA) to target folic acid receptors (FR) overly expressed on cancer cells actively. We recently reported that unloaded FA-DABA-SMA copolymers significantly reduced cancer cell viability, suggesting a secondary therapeutic mechanism of action of the copolymer carrier post-internalization. Here, we investigated the size and shape dependent secondary mechanism of unloaded 350 kDa and 20 kDa FA-DABA-SMA. The 350 kDa and 20 kDa copolymers actively target folic acid receptors (FR) to initialize internationalization, but only the large size and sheet shaped copolymer disables cell division by intracellular disruptions of essential oncogenic proteins including p53, STAT-3 and c-Myc. Furthermore, the 350 kDa FA-DABA-SMA activates early and late apoptotic events in both PANC-1 and MDA-MB-231 cancer cells. These findings indicate that the large size and structural sheet shape of the 350 kDa FA-DABA-SMA copolymer facilitate multimodal tumor targeting mechanisms together with the ability to internalize hydrophobic chemotherapeutics to disable critical oncogenic proteins controlling cell division and to induce apoptosis. The significance of these novel findings reveals copolymer secondary cellular targets and therapeutic actions that extend beyond the direct delivery of chemotherapeutics. This report offers novel therapeutic insight into the intracellular activity of copolymers critically dependent on the size and structural shape of the nanopolymers.

4.
Int J Nanomedicine ; 13: 4727-4745, 2018.
Article in English | MEDLINE | ID: mdl-30154657

ABSTRACT

Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include "smart" drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Drug Liberation , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Precision Medicine , Humans , Nanomedicine/methods , Nanoparticles/chemistry
5.
Cells ; 7(9)2018 Aug 26.
Article in English | MEDLINE | ID: mdl-30149671

ABSTRACT

The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that is are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.

6.
Nanomaterials (Basel) ; 8(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072655

ABSTRACT

Engineering of a "smart" drug delivery system to specifically target tumour cells has been at the forefront of cancer research, having been engineered for safer, more efficient and effective use of chemotherapy for the treatment of cancer. However, selective targeting and choosing the right cancer surface biomarker are critical for a targeted treatment to work. Currently, the available delivery systems use a two-dimensional monolayer of cancer cells to test the efficacy of the drug delivery system, but designing a "smart" drug delivery system to be specific for a tumour in vivo and to penetrate the inner core remains a major design challenge. These challenges can be overcome by using a study model that integrates the three-dimensional aspect of a tumour in a culture system. Here, we tested the efficacy of a functionalized folic acid-conjugated amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA) to specifically target and penetrate the inner core of three-dimensional avascular human pancreatic and breast tumour spheroids in culture. The copolymer was quantitatively analyzed for its hydrophobic drug encapsulation efficiency using three different chemical drug structures with different molecular weights. Their release profiles and tumour targeting properties at various concentrations and pH environments were also characterized. Using the anticancer drug curcumin and two standard clinical chemotherapeutic hydrophobic drugs, paclitaxel and 5-fluorouracil, we tested the ability of FA-DABA-SMA nanoparticles to encapsulate the differently sized drugs and deliver them to kill monolayer pancreatic cancer cells using the WST-1 cell proliferation assay. The findings of this study revealed that the functionalized folic acid-conjugated amphiphilic alternating copolymer shows unique properties as an active "smart" tumor-targeting drug delivery system with the ability to internalize hydrophobic drugs and release the chemotherapeutics for effective killing of cancer cells. The novelty of the study is the first to demonstrate a functionalized "smart" drug delivery system encapsulated with a hydrophobic drug effectively targeting and penetrating the inner core of pancreatic and breast cancer spheroids and reducing their volumes in a dose- and time-dependent manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...