Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 20(1): 2303226, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38251677

ABSTRACT

Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosae, with secretory form (sIgA) being dominant and uniquely stable. sIgA is challenging to produce recombinantly but is naturally found in human milk, which could be considered a global resource for this biologic, justifying its development as a mucosal therapeutic. Presently, SARS-CoV-2 was utilized as a model mucosal pathogen, and methods were developed to efficiently extract human milk sIgA from donors who were naïve to SARS-CoV-2 or had recovered from infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA in their milk (pooled to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1% or greater were all associated with sIgA. Western blot demonstrated that all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher Spike binding (mean endpoint of 0.87 versus 5.87). LCTG-002 was capable of blocking the Spike receptor-binding domain - angiotensin-converting enzyme 2 (ACE2) interaction with significantly greater potency compared to control (mean LCTG-002 IC50 154ug/mL versus 50% inhibition not achieved for control), and exhibited significant neutralization activity against Spike-pseudotyped virus infection (mean LCTG-002 IC50 49.8ug/mL versus 114.5ug/mL for control). LCTG-002 was tested for its capacity to reduce viral lung burden in K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 significantly reduced SARS-CoV-2 titers compared to control when administered at 0.25 mg/day or 1 mg/day, with a maximum TCID50 reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure and efficacious in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , Milk, Human , Immunoglobulin A, Secretory , Disease Models, Animal , Immunoglobulin A , Mice, Transgenic , Antiviral Agents
2.
bioRxiv ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37693438

ABSTRACT

Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosal compartments including the respiratory tract, with the secretory form of IgA (sIgA) being dominant and uniquely stable in these environments. sIgA is naturally found in human milk, which could be considered a global resource for this biologic, justifying the development of human milk sIgA as a dedicated airway therapeutic for respiratory infections such as SARS-CoV-2. In the present study, methods were therefore developed to efficiently extract human milk sIgA from donors who were either immunologically naïve to SARS-CoV-2 (pooled as a control IgA) or had recovered from a PCR-confirmed SARS-CoV-2 infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA Abs in their milk (pooled together to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1.0% or greater were all associated with sIgA. None of the proteins exhibited statistically significant differences between batches. Western blot demonstrated all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher binding to Spike, and was also capable of blocking the Spike - ACE2 interaction in vitro with 6.3x greater potency compared to control IgA (58% inhibition at ∼240ug/mL). LCTG-002 was then tested in vivo for its capacity to reduce viral burden in the lungs of K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 was demonstrated to significantly reduce SARS-CoV-2 titers in the lungs compared to control IgA when administered at either 250ug/day or 1 mg/day, as measured by TCID50, plaque forming units (PFU), and qRT-PCR, with a maximum reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure, efficacious, and well tolerated in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics against SARS-CoV-2 and other mucosal infections.

3.
Breastfeed Med ; 18(8): 602-611, 2023 08.
Article in English | MEDLINE | ID: mdl-37615565

ABSTRACT

Background: Although in the early pandemic period COVID-19 pathology among young children and infants was typically less severe compared with that observed among adults, this has not remained entirely consistent as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged. There is an enormous body of evidence demonstrating the benefits of human milk antibodies (Abs) in protecting infants against a wide range of enteric and respiratory infections. It is highly plausible that the same holds true for protection against SARS-CoV-2 as this virus infects cells of the gastrointestinal and respiratory mucosae. Understanding the durability of a human milk Ab response over time after infection is critical. Objective: Previously, we examined the Abs present in milk of those recently infected with SARS-CoV-2 and concluded that the response was secretory immunoglobulin A (sIgA) dominant and that these titers were highly correlated with neutralization potency. The present study aimed to monitor the durability of the SARS-CoV-2 IgA and secretory Ab (sAb) response in milk from COVID-19-recovered lactating individuals over 12 months in the absence of vaccination or reinfection. Results: This analysis revealed a robust and durable spike-specific milk sIgA response, and at 9-12 months after infection, 88% of the samples exhibited titers above the positive cutoff for IgA and 94% were above the cutoff for sAb. Fifty percent of participants exhibited less than twofold reduction of spike-specific IgA through 12 months. A strong, significant positive correlation between IgA and sAb against spike persisted throughout the study period. Nucleocapsid-specific Abs were also assessed, which revealed significant background or cross-reactivity of milk IgA against this immunogen, as well as limited/inconsistent durability compared with Spike titers. Conclusion: These data suggest that lactating individuals are likely to continue producing spike-specific Abs in their milk for 1 year or more, which may provide critical passive immunity to infants against SARS-CoV-2 throughout the lactation period.


Subject(s)
COVID-19 , Milk, Human , Adult , Child , Infant , Female , Humans , Child, Preschool , Lactation , Breast Feeding , SARS-CoV-2 , Immunoglobulin A, Secretory
4.
Front Immunol ; 14: 1154782, 2023.
Article in English | MEDLINE | ID: mdl-37325620

ABSTRACT

Introduction: Influenza (flu) vaccination prevented over 100,000 hospitalizations and 7000 deaths from flu over the 2019-2020 season in the USA. Infants <6 months are the most likely to die from flu, though flu vaccines are only licensed for infants >6 months old. Therefore, it is recommended that flu vaccination occur during pregnancy, as this reduces severe complications; however, vaccination rates are suboptimal, and vaccination is also recommended postpartum. For breast/chest-fed infants, the vaccine is believed to elicit protective and robust seasonally-specific milk antibody (Ab). Few comprehensive studies exist examining Ab responses in milk after vaccination, with none measuring secretory Ab (sAb). Determining whether sAbs are elicited is critical, as this Ab class is highly stable in milk and mucosae. Methods: In the present study, our aim was to determine to what extent specific Ab titers in the milk of lactating people were boosted after seasonal influenza vaccination. Over the 2019-2020 and 2020-2021 seasons, milk was obtained pre- and post-vaccination and assessed for specific IgA, IgG, and sAb against relevant hemagglutinin (HA) antigens by a Luminex immunoassay. Results: IgA and sAb were not found to be significantly boosted, while only IgG titers against B/Phuket/3073/2013, included in vaccines since 2015, exhibited an increase. Across the 7 immunogens examined, as many as 54% of samples exhibited no sAb boost. No significant differences for IgA, sAb, or IgG boosting were measured between seasonally-matched versus mismatched milk groups, indicating boosting was not seasonally-specific. No correlations between IgA and sAb increases were found for 6/8 HA antigens. No boost in IgG- or IgA-mediated neutralization post vaccination was observed. Discussion: This study highlights the critical need to redesign influenza vaccines with the lactating population in mind, wherein the aim should be to elicit a potent seasonally-specific sAb response in milk. As such, this population must be included in clinical studies.


Subject(s)
Influenza Vaccines , Influenza, Human , Female , Infant , Pregnancy , Humans , Influenza, Human/prevention & control , Hemagglutinins , Milk, Human , Lactation , Antibodies, Viral , Immunoglobulin G , Vaccination , Immunoglobulin A
5.
medRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-37293109

ABSTRACT

Although in the early pandemic period, COVID-19 pathology among young children and infants was typically less severe compared to that observed among adults, this has not remained entirely consistent as SARS-CoV-2 variants have emerged. There is an enormous body of evidence demonstrating the benefits of human milk antibodies (Abs) in protecting infants against a wide range of enteric and respiratory infections. It is highly plausible that the same holds true for protection against SARS-CoV-2, as this virus infects cells of the gastrointestinal and respiratory mucosae. Understanding the durability of a human milk Ab response over time after infection is critical. Previously, we examined the Abs present in milk of those recently infected with SARS-CoV-2, and concluded that the response was secretory IgA (sIgA)-dominant and that these titers were highly correlated with neutralization potency. The present study aimed to monitor the durability of the SARS-CoV-2 IgA and secretory Ab (sAb) response in milk from COVID-19-recovered lactating individuals over 12 months, in the absence of vaccination or re-infection. This analysis revealed a robust and durable Spike-specific milk sIgA response, that at 9-12 months after infection, 88% of the samples exhibited titers above the positive cutoff for IgA and 94% were above cutoff for sAb. Fifty percent of participants exhibited less than a 2-fold reduction of Spike-specific IgA through 12 months. A strong significant positive correlation between IgA and sAb against Spike persisted throughout the study period. Nucleocapsid-specific Abs were also assessed, which revealed significant background or cross reactivity of milk IgA against this immunogen, as well as limited/inconsistent durability compared to Spike titers. These data suggests that lactating individuals are likely to continue producing Spike-specific Abs in their milk for 1 year or more, which may provide critical passive immunity to infants against SARS-CoV-2 throughout the lactation period.

6.
Breastfeed Med ; 17(8): 638-646, 2022 08.
Article in English | MEDLINE | ID: mdl-35675683

ABSTRACT

Background: Numerous COVID-19 vaccines are authorized globally. To date, ∼71% of doses comprise the Pfizer/BioNTech vaccine, and ∼17% the Moderna/NIH vaccine, both of which are messenger RNA (mRNA) based. The chimpanzee Ad-based Oxford/AstraZeneca (AZ) vaccine comprises ∼9%, while the Johnson & Johnson/Janssen (J&J) human adenovirus (Ad26) vaccine ranks fourth at ∼2%. No COVID-19 vaccine is yet available for children 0-4. One method to protect this population may be passive immunization through antibodies (Abs) provided in the milk of a lactating vaccinated person. Our early work and other reports have demonstrated that unlike the post-SARS-CoV-2 infection milk Ab profile, which is rich in specific secretory (s)IgA, the vaccine response is highly IgG dominant. Results: In this report, we present a comparative assessment of the milk Ab response elicited by Pfizer, Moderna, J&J, and AZ vaccines. This analysis revealed 86-100% of mRNA vaccine recipient milk exhibited Spike-specific IgG endpoint titers, which were 12- to 28-fold higher than those measured for Ad vaccine recipient milk. Ad-based vaccines elicited Spike-specific milk IgG in only 33-38% of recipients. Specific IgA was measured in 52-71% of mRNA vaccine recipient milk and 17-23% of Ad vaccine recipient milk. J&J recipient milk exhibited significantly lower IgA than Moderna recipients, and AZ recipients exhibited significantly lower IgA titers than Moderna and Pfizer. Less than 50% of milk of any group exhibited specific secretory Ab, with Moderna recipient IgA titers measuring significantly higher than AZ. Moderna appeared to most frequently elicit greater than twofold increases in specific secretory Ab titer relative to prevaccine sample. Conclusion: These data indicate that current Ad-based COVID-19 vaccines poorly elicit Spike-specific Ab in milk compared to mRNA-based vaccines, and that mRNA vaccines are preferred for immunizing the lactating population. This study highlights the need to design vaccines better aimed at eliciting an optimal milk Ab response.


Subject(s)
COVID-19 , Milk, Human , Adenoviridae/genetics , Antibodies, Viral , Breast Feeding , COVID-19/prevention & control , COVID-19 Vaccines , Child , Female , Humans , Immunoglobulin A , Immunoglobulin G , Lactation , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL
...