Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 595(7866): 289-294, 2021 07.
Article in English | MEDLINE | ID: mdl-34194041

ABSTRACT

The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.


Subject(s)
Antibodies, Neutralizing/immunology , Liver/immunology , Liver/parasitology , Malaria Vaccines/immunology , Plasmodium falciparum/drug effects , Plasmodium falciparum/immunology , Vaccines, Attenuated/immunology , Adult , Animals , Antibody Formation/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Life Cycle Stages/immunology , Malaria/blood , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Malaria Vaccines/chemistry , Male , Middle Aged , Plasmodium falciparum/growth & development , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Vaccination/adverse effects , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/chemistry
2.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33561016

ABSTRACT

BACKGROUNDVaccines that block human-to-mosquito Plasmodium transmission are needed for malaria eradication, and clinical trials have targeted zygote antigen Pfs25 for decades. We reported that a Pfs25 protein-protein conjugate vaccine formulated in alum adjuvant induced serum functional activity in both US and Malian adults. However, antibody levels declined rapidly, and transmission-reducing activity required 4 vaccine doses. Functional immunogenicity and durability must be improved before advancing transmission-blocking vaccines further in clinical development. We hypothesized that the prefertilization protein Pfs230 alone or in combination with Pfs25 would improve functional activity.METHODSTransmission-blocking vaccine candidates based on gamete antigen Pfs230 or Pfs25 were conjugated with Exoprotein A, formulated in Alhydrogel, and administered to mice, rhesus macaques, and humans. Antibody levels were measured by ELISA and transmission-reducing activity was assessed by the standard membrane feeding assay.RESULTSPfs25-EPA/Alhydrogel and Pfs230D1-EPA/Alhydrogel induced similar serum functional activity in mice, but Pfs230D1-EPA induced significantly greater activity in rhesus monkeys that was enhanced by complement. In US adults, 2 vaccine doses induced complement-dependent activity in 4 of 5 Pfs230D1-EPA/Alhydrogel recipients but no significant activity in 5 Pfs25-EPA recipients, and combination with Pfs25-EPA did not increase activity over Pfs230D1-EPA alone.CONCLUSIONThe complement-dependent functional immunogenicity of Pfs230D1-EPA represents a significant improvement over Pfs25-EPA in this comparative study. The rhesus model is more predictive of the functional human immune response to Pfs230D1 than is the mouse model.TRIAL REGISTRATIONClinicalTrials.gov NCT02334462.FUNDINGIntramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Subject(s)
Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan/immunology , Antigens, Protozoan/administration & dosage , Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Protozoan Proteins/administration & dosage , Adult , Animals , Antigens, Protozoan/immunology , Female , Humans , Macaca mulatta , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Mice , Mice, Inbred BALB C , Protozoan Proteins/immunology
4.
Nat Med ; 22(6): 614-23, 2016 06.
Article in English | MEDLINE | ID: mdl-27158907

ABSTRACT

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10(5) PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Subject(s)
Antibodies, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Immunogenicity, Vaccine/immunology , Liver/immunology , Malaria Vaccines/therapeutic use , Malaria, Falciparum/prevention & control , Parasitemia/prevention & control , Plasmodium falciparum/immunology , Administration, Intravenous , Adolescent , Adult , Animals , Enzyme-Linked Immunosorbent Assay , Female , Healthy Volunteers , Humans , Immunoglobulin G/immunology , Interferon-gamma/immunology , Liver/cytology , Macaca mulatta , Malaria Vaccines/immunology , Male , Middle Aged , Parasitemia/immunology , Sporozoites/immunology , T-Lymphocytes/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...