Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Biol Chem ; 294(35): 13073-13092, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31308175

ABSTRACT

Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency requires the viral transactivator Rta to contact the host protein Jκ recombination signal-binding protein (RBP-Jκ or CSL). RBP-Jκ normally binds DNA sequence-specifically to determine the transcriptional targets of the Notch-signaling pathway, yet Notch alone cannot reactivate KSHV. We previously showed that Rta stimulates RBP-Jκ DNA binding to the viral genome. On a model viral promoter, this function requires Rta to bind to multiple copies of an Rta DNA motif (called "CANT" or Rta-c) proximal to an RBP-Jκ motif. Here, high-resolution ChIP/deep sequencing from infected primary effusion lymphoma cells revealed that RBP-Jκ binds nearly exclusively to different sets of viral genome sites during latency and reactivation. RBP-Jκ bound DNA frequently, but not exclusively, proximal to Rta bound to single, but not multiple, Rta-c motifs. To discover additional regulators of RBP-Jκ DNA binding, we used bioinformatics to identify cellular DNA-binding protein motifs adjacent to either latent or reactivation-specific RBP-Jκ-binding sites. Many of these cellular factors, including POU class homeobox (POU) proteins, have known Notch or herpesvirus phenotypes. Among a set of Rta- and RBP-Jκ-bound promoters, Rta transactivated only those that also contained POU motifs in conserved positions. On some promoters, POU factors appeared to inhibit RBP-Jκ DNA binding unless Rta bound to a proximal Rta-c motif. Moreover, POU2F1/Oct-1 expression was induced during KSHV reactivation, and POU2F1 knockdown diminished infectious virus production. Our results suggest that Rta and POU proteins broadly regulate DNA binding of RBP-Jκ during KSHV reactivation.


Subject(s)
DNA/metabolism , Herpesvirus 8, Human/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , POU Domain Factors/metabolism , Trans-Activators/metabolism , Binding Sites , Cell Line, Tumor , Herpesvirus 8, Human/genetics , Humans
3.
Pathogens ; 6(3)2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28777778

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two human cancers, Kaposi's Sarcoma (KS) and primary effusion lymphoma (PEL), and a lymphoproliferation, Multicentric Castleman's Disease (MCD). Progression to tumor development in KS is dependent upon the reactivation of the virus from its latent state. We, and others, have shown that the Replication and transcriptional activator (Rta) protein is the only viral gene product that is necessary and sufficient for viral reactivation. To induce the reactivation and transcription of viral genes, Rta forms a complex with the cellular DNA binding component of the canonical Notch signaling pathway, recombination signal binding protein for Jk (RBP-Jk). Formation of this Rta:RBP-Jk complex is necessary for viral reactivation to occur. Expression of activated Notch has been shown to be dysregulated in KSHV infected cells and to be necessary for cell growth and disease progression. Studies into the involvement of activated Notch in viral reactivation have yielded varied results. In this paper, we review the current literature regarding Notch dysregulation by KSHV and its role in viral infection and cellular pathogenesis.

4.
J Virol Methods ; 247: 99-106, 2017 09.
Article in English | MEDLINE | ID: mdl-28602767

ABSTRACT

Reactivation of Kaposi's sarcoma-associated herpesvirus (KHSV; also known as Human herpesvirus (HHV)-8) from latency is associated with progression to disease. The primary experimental models for studying KSHV reactivation are B lymphocyte cell lines derived from patients with primary effusion lymphoma (PEL). PEL models have remained essential tools for understanding molecular details of latency and reactivation, yet they have shortcomings. In particular, PEL cells are difficult to transfect with plasmid DNA, which limits their routine use in studies that require introduction of exogenous DNA. Moreover, PELs produce poorly infectious virus, which limits functional quantitation of the ultimate step in KSHV reactivation. In this study, we show that a recently published reporter virus system overcomes inherent difficulties of using PELs for studying viral reactivation. Vero rKSHV.294 cells harbor a recombinant reporter KSHV clone and produce infectious virus whose quantitation is strictly dependent on passage to naïve 293 cells. We show that the cells are easily transfectable, and produce significant amount of infectious virus in response to ectopically-expressed lytic switch protein Rta. In thus study, we derive optimal conditions to measure fold reactivation by varying experimental time periods and media volumes in infections and reporter enzyme reactions, and by eliminating background cellular and media activities. By measuring production of infectious virus, we demonstrate that Rta, but not the cellular transactivator Notch Intracellular Domain (NICD)-1, is sufficient to reactivate KSHV from latency. These data confirm previous studies that were limited to measuring viral gene expression in PELs as indicators of reactivation.


Subject(s)
Herpesvirus 8, Human/physiology , Transfection/methods , Virology/methods , Virus Activation , Virus Latency , Cell Line , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/metabolism , Trans-Activators/metabolism
6.
J Virol ; 88(2): 1281-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24227836

ABSTRACT

In primary effusion lymphoma (PEL) cells infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), the promoter of the viral lytic switch gene, Rta, is organized into bivalent chromatin, similar to cellular developmental switch genes. Histone deacetylase (HDAC) inhibitors (HDACis) reactivate latent KSHV and dramatically remodel the viral genome topology and chromatin architecture. However, reactivation is not uniform across a population of infected cells. We sought to identify an HDACi cocktail that would uniformly reactivate KSHV and reveal the regulatory HDACs. Using HDACis with various specificities, we found that class I HDACis were sufficient to reactivate the virus but differed in potency. Valproic acid (VPA) was the most effective HDACi, inducing lytic cycle gene expression in 75% of cells, while trichostatin A (TSA) induced less widespread lytic gene expression and inhibited VPA-stimulated reactivation. VPA was only slightly superior to TSA in inducing histone acetylation of Rta's promoter, but only VPA induced significant production of infectious virus, suggesting that HDAC regulation after Rta expression has a dramatic effect on reactivation progression. Ectopic HDACs 1, 3, and 6 inhibited TPA-stimulated KSHV reactivation. Surprisingly, ectopic HDACs 1 and 6 stimulated reactivation independently, suggesting that the stoichiometries of HDAC complexes are critical for the switch. Tubacin, a specific inhibitor of the ubiquitin-binding, proautophagic HDAC6, also inhibited VPA-stimulated reactivation. Immunofluorescence indicated that HDAC6 is expressed diffusely throughout latently infected cells, but its expression level and nuclear localization is increased during reactivation. Overall, our data suggest that inhibition of HDAC classes I and IIa and maintenance of HDAC6 (IIb) activity are required for optimal KSHV reactivation.


Subject(s)
Herpesviridae Infections/enzymology , Herpesviridae Infections/virology , Herpesvirus 8, Human/physiology , Histone Deacetylases/metabolism , Virus Activation , Cell Line , Gene Expression Regulation, Viral/drug effects , Herpesviridae Infections/genetics , Herpesvirus 8, Human/drug effects , Herpesvirus 8, Human/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Humans , Hydroxamic Acids/pharmacology , Promoter Regions, Genetic , Virus Activation/drug effects , Virus Latency/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...